

Strathcona Gardens Recreation Complex Dehumidifier and CO2 Upgrade

PREPARED BY: BRYN CUBBERLEY

PHONE: 778.700.1086x55

EMAIL: BRYN@POLARENG.CA

DATE: NOVEMBER 8, 2024

Signatures

Author

November 8, 2024 Date

Bryn Cubberley, Polar Engineering Ltd.

An Comba

Engineer of Record

Ian Welle, P.Eng., Sr. Engineer ian@polareng.ca 778-700-1086

EGBC Permit to Practice #1003657

Revision Log

VERSION	DATE	AFFECTED	CHANGE	COMMENTS	CHANGE
		SECTIONS	REQUEST #	COMMENTS	AUTHOR
R1	2024-11-08	-	-	ISSUED FOR TENDER	BC

Table of Contents

es	
uthor	
3	
•	
,	
•	
•	
ations	3
ENERAL WORK INSTRUCTIONS	4
GENERAL	4
PRODUCTS	15
EXECUTION	
EMOLITION AND REVISION WORK	20
GENERAL	20
EXECUTION	
QUIPMENT	22
GENERAL	
• • •	
PRODUCTS	4 //
	GENERAL PRODUCTS EXECUTION EMOLITION AND REVISION WORK GENERAL EXECUTION QUIPMENT GENERAL PRODUCTS EXECUTION PUMPS HEAT EXCHANGERS AIR COILS (FLUID) EXPANSION TANKS DEHUMIDIFIER EFRIGERATION PIPING AND VALVES GENERAL PRODUCTS GENERAL PRODUCTS EXECUTION OMESTIC WATER PIPING AND VALVES GENERAL GENERAL GENERAL PRODUCTS EXECUTION OMESTIC WATER PIPING AND VALVES GENERAL GENERAL

	6.3	EXECUTION	41
7	STA	NDARD DUCTWORK	45
	7.1	GENERAL	45
	7.2	PRODUCTS	45
	7.3	EXECUTION	46
8	MEC	CHANICAL INSULATION	52
	8.1	GENERAL	52
	8.2	PRODUCTS	53
	8.3	EXECUTION	57
9	CON	NTROLS	69
	9.1	GENERAL	69
	9.2	PRODUCTS	69
	9.3	EXECUTION	70

Project Overview

1 Project Introduction

The Strathcona Gardens Recreation Complex (SGRC) is undergoing upgrades to the CO2 refrigeration system, Rod Brind'Amour Arena (RBAA) dehumidifier, and various controls updates across the facility. The upgrades include:

- Installation of a new gas cooler in the CO2 plant.
 - o Upgrades of related pumps and piping.
 - o Updates to controls setpoints for CO2 heat recovery systems.
 - All CO2 system upgrades will be completed by CIMCO refrigeration as part of their service agreement with the SGRC. Please see the mechanical drawing package for more details.
- Replacement of the existing RBAA dessicant dehumidifier with a new El Solutions A35G.
 - o Replacement of existing supply and return ducting.
 - o Installation of an external reactivation air preheat coil.
- Updates to AHU3/4/5 control sequences and piping connections to heat recovery loop.
 - o Updates to controls setpoints on heat recovery loop.

2 Project Costing

Please refer to Strathcona Regional District's bidding documentation for more information on project costing requirements.

3 Design Methodology

Polar Engineering works with industry leaders across the world to ensure that our clients receive state-of-the-art engineering solutions. We pride ourselves on working with our clients through in-depth interviews to balance initial costs, operating costs, and energy reductions. This design methodology has allowed our team of engineers to win awards from ASHRAE, RFABC, and the University of Victoria.

4 Contractor Experience

All contractors who bid on this work must have the appropriate experience with ice arena refrigeration systems. The successful team must have completed a minimum of three ice arena refrigeration projects worth over \$300,000 in the last two years.

5 Project Schedule

Please refer to Strathcona Regional District's bidding documentation for more information on project scheduling requirements.

Specifications

1 GENERAL WORK INSTRUCTIONS

1.1 GENERAL

1.1.1 REFERENCES

1. The General Conditions of the Contract, the Supplementary Conditions, and all Sections of Division 01 apply to and are a part of this Section of the Specification.

1.1.2 APPLICATION

 This Section specifies requirements and instructions that are common to the Sections of the Specification. It is a supplement to each Section and is to be read accordingly.

1.1.3 DEFINITIONS

- 1. The following are definitions of words found in this specification document and associated drawings and documents:
 - Provide (and tenses of provide) means supply and install complete
 - Install (and tenses of install) means install and connect complete
 - Supply (and tenses of supply) means supply only
 - Specified (and tenses of specified) includes instructions and information in this specification document and associated documents and drawings
 - Owner means Strathcona Regional District
 - Owner's Representative means Robin Kentrop, rkentrop@srd.ca
 - Consultant means Polar Engineering who has prepared the contract documents on behalf of the Owner

1.1.4 CODES, REGULATIONS, AND STANDARDS

- All Codes, Regulations, and Standards referred to in this Section and in Sections
 to which this Section applies are the latest edition of the Codes, Regulations,
 and Standards in effect at the time the building permit is obtained, or at the
 time of bid closing for the Project, whichever comes first.
- 2. All work is to be in accordance with requirements with Codes, Regulations, and Standards applied by governing authorities, including:
 - The BC Building Code
 - Technical Safety BC (TSBC)

- 3. All electrical items associated with mechanical equipment are to be certified and bear the stamp or seal of a recognized testing agency such as CSA, UL, ULC, or ETL; or bear a stamp to indicate special electrical utility approval.
- 4. All work must be completed in a manner that allows the Owner to maintain a TSBC Risk Assessed status.

1.1.5 QUALITY ASSURANCE

- All work is to be done by tradesmen who perform only the work that their certificates permit, or by apprentice tradesmen under direct on-site supervision of an experienced Industrial Training Authority Red Seal certified journeyman tradesman.
- 2. Testing and inspections not explicitly assigned to the Owner are the Contractor's responsibility. Unless otherwise indicated, provide the quality control, testing, and commissioning services specified in this document and those required by municipal, provincial, and federal governing bodies.
- 3. All quality control services must be provided by qualified personnel or testing agency.
- 4. All quality control services must be recorded, and documentation submitted to the Owner and the Consultant for verification and approval.
- 5. All contractors and subcontractors shall identify a qualified red seal tradesmen or other qualified owner representative as the main point of contact for the Consultant and the Owner.
- 6. All welders must be Class B or A and have up to date documentation.

1.1.6 EXAMINATION OF SITE AND DOCUMENTS

- When estimating the cost of the work and prior to submitting a bid for the work, carefully examine all the bid documents and visit the site to determine and review all existing site conditions that will or may affect the work and include for all such conditions in the bid price.
- 2. All freight costs for the equipment and materials related to installation and integration are to be included in the Contractor's bid.
- 3. Contractors are to note that premium or special freight costs may be required to deliver materials to site to meet completion schedules, the cost will be borne by the Contractor.
- 4. Contractors are responsible for checking all the relevant dimensions and line routing before bidding.

5. Contractors are responsible for confirming available supply voltage onsite, prior to ordering of equipment.

1.1.7 DRAWINGS AND SPECIFICATION

- 1. The mechanical drawings show approximate locations of equipment and connecting services. Any information regarding accurate measurements of the building are to be taken at the site by the Contractor.
- 2. As-built drawings shall be kept onsite during construction to allow for identification of design changes as part of the construction process.
- 3. A marked-up set of the drawings shall either be submitted to the Consultant for update, paid for by the Contractor, or a complete set of updated drawings will be submitted for approval by the Consultant and the Owner.
- 4. Both hardcopy in size Arch D and PDF versions of the as-built drawings must be supplied to the Owner upon project completion.
- 5. Submit a digital copy of all as-built drawings to the Owner's Representative.

1.1.8 PERMITS AND FEES

- 1. Contractor is responsible for applying for, obtaining, and paying for all permits and inspection fees required to complete the work
- 2. A copy of each permit and inspection report shall be provided to the Owner's Representative.
- 3. Design registration shall be completed and submitted by the Contractor as required by Technical Safety BC.

1.1.9 PAYMENT

- 1. Unless otherwise specified by the Owner's documents, the following payment section shall apply.
 - Progress payments are to be discussed and approved prior to project award and outlined in the contract with the Contractor and Owner.
 - A minimum of 10% of the total project value shall be held back during the final progress payment for deficiencies and will be paid at the earliest, subject to the deficiencies list, 55 days after the Consultant's final inspection.
 - Upon completion of the final inspection, and when the Consultant has determined the value of the holdback accounting for deficiencies, the Contractor can bill for the remaining amount.

- Upon completion of the deficiencies and approval by the Consultant, the Contractor may bill for the remaining project amount.
- Upon notification from the Owner or the Consultant, the Contractor has 30 days to complete any deficiencies identified onsite. After this time, the Owner can hire a third-party contractor to complete this work and the Contractor will be responsible to the Owner for any costs associated with this work.

1.1.10 SHOP DRAWINGS AND PRODUCT DATA SHEETS

- Submit for review, shop drawings and product data sheets indicating in detail
 the design, construction, and performance of products and components. Shop
 drawings and product data sheets shall be supplied as PDF (Portable
 Document Format) files.
- 2. Shop drawings shall include equipment performance data, piping, power, and control wiring schematics, included accessories, rated capacities, weights, and all other relevant data.
- 3. The Consultant will retain copies of each shop drawing or product data sheet submitted.
- 4. The Contractor must obtain shop drawings approved by the Consultant prior to ordering equipment.
- 5. The Contractor shall provide a minimum of two weeks to the Consultant to review data sheets and shop drawings prior to ordering equipment.
- 6. All materials must meet all federal, provincial, and municipal regulations and guidelines.
- 7. All pressure vessels must be certified and registered with the appropriate governing body.
- 8. All alternate components which meet the same design conditions as those outlined in this specification are welcomed but must be submitted two weeks prior to the closing date of the tender and be approved by the Consultant.
- 9. Submittals shall include the following information where applicable:
 - Manufacturer
 - Surface area and heat transfer arena
 - Refrigerant inlet/outlet temperatures
 - Fluid inlet/outlet temperatures
 - Operating pressures
 - Pressure drops

- Manufacturing material
- Pressure ratings
- CRN numbers
- Voltage and phase
- RPM
- Seals and gaskets
- Construction materials
- 10. Final shop drawings must be submitted to the Consultant prior to the delivery of materials and equipment to the jobsite.

1.1.11 SCAFFOLDING, RIGGING, AND HOISTING

- 1. Supply, erect and operate all scaffolding, rigging, hoisting equipment and associated hardware required for your work.
- 2. Do not place major loads on any portion of the structure without approval from the Consultant.
- 3. Submit for review, rigging and hoisting plans, contemplated dates, permits, equipment, safety measures, and personnel prior to hoisting operations.

1.1.12 PROJECT CLOSEOUT SUBMITTALS

- Prior to application for Substantial Completion, submit all required items and documentation specified, including the following:
 - Operating and Maintenance Manuals
 - Final commissioning report
- 2. Operation and Maintenance Manuals must be provided in the following formats:
 - Submit 2 hard copies consolidated in hardcover 3" D ring binders
 - Submit 1 digital copy on a USB flash drive to facility staff
 - Submit 1 digital copy to the Owner's Representative
- 3. Maintenance manuals shall include:
 - The Consultant's name, street address, telephone and fax number, and email address
 - The Contractor's name, street address, telephone and fax number, and email address
 - All subcontractor's names, street address, telephone and fax number, and email address

- A copy of each "Reviewed" shop drawing or product data sheet
 Each shop drawing shall include the manufacturer or supplier name, telephone number, and email address.
 - Each shop drawing shall include the email address for local source of parts and service.
- 4. Maintenance manuals shall include recommended maintenance and maintenance intervals, normal operating parameters, data sheets, and the expected lifespan of all mechanical, electrical, and controls equipment.

1.1.13 PHASING, HOURS OF WORK, AND NOISE CONTROL

- 1. Work is to be performed between the hours 8:00 AM and 5:30 PM Monday to Friday. If work is required to be performed outside the hours specified above, special permission, in writing, must be obtained from the Owner.
- 2. Phasing of the work may be required to maintain the existing building in operation. Include all costs for phasing the work including all required "off hours" premium time labour costs.
- 3. The Contractor shall instate appropriate controls to reduce nuisance noise level from affecting the areas adjacent to the work site.

1.1.14 REQUIREMENTS FOR CONTRACTOR RETAINED ENGINEERS

- All professional engineers retained by you to perform consulting services with regard to your work, for example, seismic engineer, are to be members in good standing with the local Association of Professional Engineers and are to carry and pay for errors and omissions for professional liability insurance in compliance with requirements of the governing authorities in the locale of the work.
- 2. Your engineer's professional liability insurance is to protect your Consultants and Sub-Consultants, and their respective servants, agents, and employees against any loss or damage resulting from the professional services rendered by your Consultants, Sub-Consultants, and their respective servants, agents, and employees regarding the work of this Contract.
- 3. The Contractor is to meet or exceed all liability insurance requirements laid out in the Owner's contract documentation.
- 4. If the Owner's contract documentation does not contain specific liability insurance requirements, the following requirements are to be met at a minimum:

- Coverage is to be a minimum of \$2,000,000.00 inclusive of any one occurrence
- The insurance policy is not to be cancelled or changed in any way without the insurer giving the Owner a minimum of thirty days written notice
- Liability insurance is to be obtained from an insurer registered and licensed to underwrite such insurance in the location of the work
- Evidence of the required liability insurance in such form as may be required is to be issued to the Owner, the Owner's consultant, and Municipal Authorities as required prior to commencement of your consultant's services

1.1.15 EQUIPMENT AND SYSTEM START-UP

1. When installation of equipment/systems is complete prior to commissioning, perform start-up under direct on-site supervision and involvement of the equipment/system manufacturer's representative or the Consultant, make any required adjustments, document the procedures, leave the equipment/system in proper operating condition, and submit a complete set of start-up documentation sheets signed by the manufacturer/supplier and the Contractor.

1.1.16 EQUIPMENT AND SYSTEM COMMISSIONING

- After successful start-up and prior to Substantial Performance, commission the mechanical work in accordance with requirements of CSA Z320, Building Commissioning. Use commissioning sheets included with the CSA Standard, and any supplemental commissioning sheets required.
- Submit final commissioning data sheets, project closeout documents, and other required submittals to the Consultant and Owner's Representative. Ignore items that do not pertain to this project. These submittals will include, but are not limited to:
 - Inspection Date
 - Description of testing procedure
 - Testing contractor name and personnel
 - VFD speed and current of all pumps
 - Pump pressure differentials
 - VFD speed and current of all fans

- Heat exchanger supply and return temperatures
- Heat Pump compressor speed and current
- Supply and return temperatures of all heat pump heat exchangers, including evaporators, condensers, and subcoolers
- Heat pump suction gas temperature
- EEV valve average position
- · Ammonia high cut out testing
- Ammonia liquid level normal operating percentages
- Control system testing and verification
- All other relevant information that may impact the performance of the system.
- 3. Furthermore, the following operating conditions shall be simulated, and the operation of the controls system checked to ensure a fully functional system.
 - Operation of ammonia solenoids and energy recovery heat exchanger
 - Heat pump energy recovery system starting and operating at desired setpoint.
 - Unless otherwise noted, heat pump compressors shall be operated across entire capacity range to ensure proper oil return.
 - All pumps fitted with VFD shall be capable of operating from 25% of the operating speed to 100% of the operating speed, including the desired setpoint.
 - Condenser floating head pressure control algorithm
 - If applicable, industrial compressors to be unloaded and tested in each capacity control range.
 - All other operating conditions required to confirm the intended operation and performance of the system.
 - Please refer to control strategies contained within the attached drawing package for more information.
- 4. During each one of these situations, the following conditions shall be recorded and provided to the Consultant and Owner's Representative. It is the responsibility of all contractors to work together to ensure proper commissioning, but it is the responsibility of the Contractor to provide the Owner and the Consultant with the documentation below:
 - Speed and pressure differential of all pumps

- Speed and amperages of the compressor motors operating in the conditions outlined above
- Temperatures on the inlet and outlet of heat pump supply and return lines, including evaporator, condenser, and subcooler lines.
- Temperature and pressure at the inlet and outlet of the ammonia energy recovery heat exchanger.
- All other relevant information required to evaluate the performance of the system.

1.1.17 EQUIPMENT INSPECTIONS

- It is the responsibility of the Contractor to make the Consultant aware of appropriate inspection dates based on work commenced onsite. The Contractor shall give the Consultant at least one week notice inside British Columbia and two weeks' notice outside of British Columbia.
- 2. Upon substantial project completion, the Contractor shall contact the Consultant for a final inspection and deficiency list.
- 3. Upon substantial project completion, the Consultant will perform an onsite inspection and send the Contractor an inspection summary and a deficiency inspection list. All deficiencies must be addressed to the satisfaction of the Owner's Representative and Consultant before the final holdback is paid by the Owner to the Contractor.
- 4. The Contractor shall repair or replace all property and existing equipment that is damaged or disturbed during construction. Equipment and property repairs must be completed to the satisfaction of the Owner's Representative and the Consultant before the final holdback is paid to the Contractor.

1.1.18 EQUIPMENT AND SYSTEM O & M DEMONSTRATION & TRAINING

- 1. Provide training to the Owner's designated personnel in all aspects of operation and maintenance of the equipment after start-up.
- 2. All demonstrations and training shall be performed by qualified technicians employed by the equipment/system manufacturer/supplier.
- 3. The Contractor shall provide a onetime onsite training course which will include the following:
 - Provide lunch for all attendees to this training session.
 - Coordinate with all subcontractors to ensure that training encompasses all relevant systems.

- Record date of training and name and signature of all attendees
- 4. The Contractor shall provide a syllabus of the training session to the Owner and Consultant for approval before scheduling the training session.
- 5. Training for Facility Operations Staff shall cover the following subjects:
 - Regular and seasonal preventative maintenance procedures
 - Sequence of operations
 - Desired operating temperature/pressure ranges of equipment
 - Safety controls
 - Emergency isolation valves
 - Alarms
 - Proper use of computer control system
 - Trouble-shooting procedures
 - Primary & secondary pressure relief systems and overflows
 - All other relevant system information required for safe and efficient operation of the system.
- 6. Training for facility electricians shall cover the following subjects:
 - All electrical systems
 - Sequence of operations
 - Safety controls

1.1.19 SAFETY AND TRAFFIC

- The Contractor as the Prime Contractor is responsible for all safety measures required by the Owner, municipal, provincial government, and federal government.
- 2. The Contractor shall provide all traffic control required by the Owner, municipal, provincial government, and federal government to effectively perform the work outlined in this document.

1.1.20 PROJECT SCHEDULE

- Upon award of contract, the Contractor shall prepare a work schedule with all major work identified, subcontractors identified, and expected dates for consultant site inspections identified.
- 2. The schedule shall be reviewed and approved by the Owner and the Consultant prior to work commencing at the site.

1.1.21 PROJECT MEETINGS

- Upon award of contract, the Contractor shall attend and chair an online monthly meeting before work commences to discuss the project schedule, the Contractor's duties, and responsibilities; and to introduce designated site personnel.
- 2. Upon commencement of work, the Contractor shall attend and chair an online bi-weekly meeting to update the Owner and Consultant on the project status.
- 3. Contractor to prepare meeting minutes and distribute to all attendees.
- 4. Polar Engineering can be contracted to take and distribute meeting minutes at a cost of \$150 per meeting paid by the Contractor.
- 5. Contractor to provide a project Gantt chart to the Owner's Representative and the Consultant upon project award. This Gantt chart is to be updated monthly to reflect changes in project progress. At minimum, this Gantt chart must contain:
 - Expected equipment delivery dates
 - Construction schedule
 - Required facility shutdowns and expected startup dates
 - Expected inspection dates
 - Expected project completion date
 - Other information deemed important by the Owner's Representative or Consultant
- 6. Contractor to attend and chair additional site meetings as requested by the Owner or the Consultant.

1.1.22 REQUESTS FOR INFORMATION

- 1. Obtain answers to work related queries at site meetings whenever possible, but if not possible, prepare a Request for Information (RFI) and email to the Consultant. The RFI is to include:
 - The Project name, the date, and Contractor's name and the name of the person making the query
 - An RFI number, a drawing reference if applicable, and a detailed description of the problem for which the RFI is issued

1.2 PRODUCTS

1.2.1 MECHANICAL WORK IDENTIFICATION MATERIALS

- 1. Equipment Nameplates: Minimum 1/16" thick 2-ply laminated coloured plastic plates, minimum ½" x 2" for smaller items such control valves, minimum 1" x 2½" for equipment, and minimum 2" x 4" for control panels and similar items. Additional requirements are as follows:
 - Each nameplate is to be white, complete with bevelled edges and black engraved capital letter wording to completely identify the equipment and its use with no abbreviations unless specified otherwise.
 - Wording is to include equipment service but must be reviewed/approved prior to engraving.
 - Supply stainless steel screws for securing nameplates in place.
- 2. **Pipe Identification**: Pipe identification is to be equal to Smillie McAdams Summerlin Ltd. or Brady vinyl plastic with indoor/outdoor type vinyl ink lettering and directional arrows, as follows:
 - For pipe to and including 6" diameter, coiled type snap-on markers of a length are to wrap completely around the pipe or pipe insulation.
 - For pipe larger than 6" diameter, saddle type strap-on markers with two opposite identification locations and completed with nylon cable ties.
- 3. Identification wording and colours are to match existing wording and colours at the site.
- 4. Ammonia piping, valves, and other components shall be labelled per IIAR (International Institute of Ammonia Refrigeration) recommendations.
- 5. Where there is no existing identification onsite, the Contractor is to confirm identification, colour, and nomenclature with the Consultant.
- 6. Upon project completion, Contractor to supply Owner's Representative with both PDF and size Arch D drawing detailing all valve and equipment tags.

1.3 EXECUTION

1.3.1 INSTALLATION OF EQUIPMENT

 Unless otherwise specified or indicated, install all equipment in accordance with the equipment manufacturer's recommendations and instructions. Governing Codes, Standards, and Regulations take precedence over manufacturer's instructions.

- 2. The Contractor is responsible for transportation, off-loading, and rigging of all mechanical equipment and materials, including all costs associated with these activities.
- 3. The Contractor is responsible for all premium or special freight costs required to deliver materials and equipment to site to meet construction schedules.
- 4. Contractor to provide piping and equipment supports, anchors, sleeves, anchor bolts, restraints, and accessories as required.
- 5. Contractor to provide equipment supports, structural steel frames, housekeeping pads, and mounting accessories as required.
- 6. The Contractor is responsible for all structural and/or seismic engineering and associated costs to ensure equipment stands meet all governing codes and standards.
- 7. The Contractor is responsible for ensuring that equipment supports adequately elevate the equipment to ensure that snow accumulation does not affect equipment performance.
- 8. Contractor to provide snow guards and/or snow breaks to ensure falling snow does not damage or negatively affect the performance of installed equipment.
- 9. All systems and pieces of equipment are to be provided with all necessary piping, valves, equalization lines, filters, purge points, drains, vents, and disconnects required to ensure reliable operation.
- 10. All systems and pieces of equipment to be provided with all electrical components and accessories required to integrate with onsite electrical infrastructure.
- 11. All systems and pieces of equipment are to be provided with all necessary mechanical, electrical, and controls equipment required to ensure reliable operation.
- 12. Contractor responsible for providing, charging, and installing new primary/secondary fluids and inhibitors required to operate the system for the first 6 months.
- 13. Primary/secondary fluids shall only be reused with express written permission from the Owner and Consultant.
- 14. Contractor responsible for updating all required pressure relief and safety systems to ensure compliance with governing codes and standards.
- 15. Contractor responsible for providing controls wiring, conduit, sensing equipment, coding, graphics, and licenses for all new/modified systems and pieces of equipment.

- 16. Contractor responsible for commissioning all new equipment and making any necessary adjustments to existing equipment to ensure safe and reliable operation.
- 17. Contractor must provide a one-year labor and material warranty (on-site) commencing from when substantial completion is granted.
- 18. Contractor is responsible for labeling all the equipment, piping, valves, and electrical per the specification document and accompanied drawings.
- 19. Contractor is responsible for updating mechanical room ventilation systems to ensure compliance with CSA B52 clause 6.2.5.5.

1.3.2 MECHANICAL WORK IDENTIFICATION

- 1. Identify all new mechanical work in accordance with existing identification standards at the site.
- 2. Identify new piping adjacent to each valve and at each piece of connecting equipment.
- 3. Provide an identification nameplate for each new piece of equipment. Secure nameplates in place with stainless steel screws unless such a practice is prohibited, in which case use epoxy cement applied to cleaned surfaces.
- 4. Motor Controllers and Disconnect Switches: Provide an identification nameplate for each new motor controller, and on each disconnect switch provided as part of the electrical work for equipment provided and installed by the Contractor.

1.3.3 FINISH PAINTING OF MECHANICAL WORK

- 1. The Contractor shall prepare all surfaces, prime, and paint all piping support steels, conduit and boxes, and heat pump.
- 2. Contractor is to paint all the new equipment on site to match existing building and mechanical equipment.
- 3. Paint type and colour shall match existing building and mechanical equipment.
- 4. Touch-up paint all damaged factory applied finishes on mechanical work products.
- 5. All surfaces must be prepared, and paint applied per manufacturer's recommendations.
- 6. The Contractor is responsible to ensure the surface preparation and paint application are completed by someone with at least three (3) years of experience.

- 7. To ensure a long life, paint and all other exterior coatings must not be applied during rain, snow, or when the relative humidity is outside the recommended manufacturers procedures.
- 8. Manufacturer's minimum and maximum recommended application temperatures shall be adhered to.
- 9. Examine surfaces one week prior to the commencement of work. Report any condition that may affect proper application to the Owner and the Consultant.
- 10. Mask all required surfaces prior to commencing work.
- 11. Clean all surfaces per manufacturer's recommendations.
- 12. Uncoated steel and iron surfaces: Remove grease, weld splatter, dirt, and rust. Where scale or rust is present, remove by wire brush or sand blasting, clean by washing with solvent. Apply treatment of phosphoric acid solution, ensuring weld joints, bolts, and nuts are similarly cleaned. Prime all repairs after cleaning and treatment.
- 13. Prime and paint prepared surface per manufacture's recommendations.

1.3.4 PIPE LEAKAGE TESTING

- 1. Before new piping has been insulated, and before equipment has been connected, test all new piping for leakage. Submit signed and dated test report sheets to confirm proper test results.
- 2. Include temporary piping connections required to complete pipe leakage tests.
- 3. Piping under test pressure is to have a maximum of a 2-psi pressure drop for the length of the test period unless specified otherwise.

1.3.5 SUPPLY OF MOTOR STARTERS AND ACCESSORIES

- 1. Motor starters for mechanical equipment, except for starters integral with packaged equipment and starters factory installed in equipment power and control panels, will be provided as part of the electrical work.
- 2. Motors greater than 10hp shall be supplied with a soft starter unless supplied with a VFD.

1.3.6 WASTE MANAGEMENT AND DISPOSAL

1. Separate and recycle waste materials in accordance with requirements of Canadian Construction Association Standard Document CCA 81, A Best Practices Guide to Solid Waste Reduction.

END OF SECTION

2 DEMOLITION AND REVISION WORK

2.1 GENERAL

2.1.1 APPLICATION

 This section specifies requirements, criteria, methods, and execution for mechanical demolition work that is common to one or more mechanical work sections, and it is intended as a supplement to each section and is to be read accordingly.

2.1.2 REFERENCE STANDARD

1. Perform demolition work in accordance with requirements of CAN/CSA-S350, Code of Practice for Safety in Demolition of Structures.

2.2 EXECUTION

- 1. The Contractor is responsible for all demolition and revision work.
- 2. Estimate the scope, extent, and cost of the demolition work at the site during the bidding period and include for all such costs in your bid.
- 3. Demolitions shall be coordinated with the Owner's Representative to ensure minimal downtime.
- 4. Decommission and remove all existing equipment and materials which have been marked for removal.
- 5. All removed material and equipment is the property of the Owner and shall be disposed of in conjunction with the with Owner's wishes.
- 6. All materials and equipment approved for removal by the Owner shall be disposed of in an environmentally sustainable fashion.
- 7. Ensure that products and materials required for re-use are properly retained and protected.
- 8. Where existing valves with tags are removed, the tags shall be reused where possible.
- 9. Remove from the site and dispose of all existing equipment and materials which have been removed.
- 10. Demolitions shall be completed using a method which will ensure minimal building damage, and any damage which occurs during equipment removal must be restored to the original condition prior to the project completion.

- 11. The Contractor is responsible for site inspections to determine if there are any hazardous materials, such as asbestos, onsite, and to perform remediation per the codes and standards in BC required to complete the work outlined in this specification.
- 12. Where required, wetting agents approved by the Owner, or the Consultant shall be used for dust control.
- 13. All demolished material shall be quickly removed from site. All demolished material which must be stored onsite will be stored in a location approved by the Owner.
- 14. Appropriate bodies of water, including storm water, must be appropriately protected.

END OF SECTION

3 EQUIPMENT

3.1 GENERAL

3.1.1 APPLICATION

1. This section specifies requirements and instructions that are common to the remainder of this section. It is a supplement and is to be read accordingly.

3.1.2 SUBMITTALS

- 1. Contractor shall provide the following submittals to the Consultant and Owner's Representative.
 - Equipment shop drawings and product data sheets, complete with piping and power and control wiring schematics, accessories, rated capacities, weights, and all other relevant data.
 - Factory inspections and test reports with O & M Manual project close-out data.
 - Site inspection and start-up report detailing all the important equipment functions required to ensure equipment performance over the entire range of operation.
 - A one-year written warranty for all workmanship dated and signed by the Contractor.

3.1.3 QUALITY ASSURANCE

- 1. Piping system work is to be in accordance with the following Codes and Standards:
 - CAN/CSA B-52 Mechanical Refrigeration Code
 - CAN/CSA B-51 Boiler Pressure Vessel and Piping Code
 - ASME/ANSI B31.1 Power Piping
 - ASME/ANSI B31.5 Refrigeration and Heat Transfer Components
 - ASHRAE 15 Safety Standard for Refrigeration System
 - ASHRAE Standard 34 Designation and Safety Classification of Refrigerants
 - IIAR2 Ammonia Refrigeration Piping Handbook

3.2 PRODUCTS

1. The Contractor shall confirm the supply voltage available on site before ordering equipment.

3.3 EXECUTION

3.3.1 EQUIPMENT ACCESSORIES

- All equipment shall be installed and integrated with the existing systems with all the necessary piping, valves, purge points, strainers, sight glasses, sensors, drain ports, conduit, disconnects, control equipment, electrical, base, and piping supports as required to ensure a complete functioning system.
- 2. Install ¼-in purge valves on major pieces of equipment to allow for proper depressurization of equipment.

3.3.2 SEISMIC RESTRAINTS

- 1. The Contractor is responsible for ensuring that all equipment is appropriately seismically restrained, and that all installed seismic restraints conform to all seismic codes and regulations.
- 2. If required by the Owner, the Contractor must retain the services of the seismic engineer.

3.4 PUMPS

3.4.1 GENERAL

- 1. At a minimum upon commissioning, the following values shall be recorded and provided to the Owner and the Consultant.
 - Pump suction pressure
 - Pump discharge pressure
 - Pump voltage

3.4.2 PRODUCTS

- 1. Approved pump manufacturers are Grundfos, Taco, and Armstrong.
- 2. Alternate pump manufacturers can be installed at the discretion of the Consultant and the Owner.

- 3. All pumps must be constructed from appropriate materials or have appropriate coatings suited for their intended operation. For example, all pumps used to pump pool water must have at a minimum an epoxy coating.
- 4. All pumps to be used in potable water applications must be constructed of appropriate materials and be approved for use with potable water by the pump manufacturer.

3.4.3 EXECUTION

- 1. All pumps to be installed, supported, and commissioned per manufacturer's recommendations.
- 2. All pumps to be installed with isolation valves, drain valves, and pressure gauges on the inlet and outlet.
- 3. All pumps to be supplied with appropriate suction guide and/or triple-duty valves to ensure a complete and functioning system.
- 4. Install a minimum of 2 feet of carbon steel piping at the inlet and outlet of each pump before transitioning to PVC, CPVC, or HDPE. Note, steel pups are not required for transition to copper piping.
- 5. All pumps must be installed with tags identifying pump to as-built mechanical and controls drawings.
- 6. Should the Contractor identify onsite conditions or design issues that could lead to cavitation within a pump, the Consultant must be notified prior to onsite construction.

3.5 HEAT EXCHANGERS

3.5.1 GENERAL

- 1. The Contractor shall record and provide the following values to the Consultant and the Owner when commissioning a heat exchanger:
 - Heat exchanger type
 - Heat exchanger application
 - Inlet temperatures
 - Outlet temperatures
 - Pressure drop through heat exchanger

3.5.2 PRODUCTS

- Approved heat exchanger manufacturers are Alfa Laval, Danfoss, and Kelvion.
 Alternate heat exchanger manufacturers can be installed at the discretion of the Consultant and the Owner.
- 2. All heat exchangers must meet or exceed the specified capacity at the design conditions outlined in the associated drawing package.
- 3. Heat exchangers operating with brine (CaCl₂) must be constructed from Titanium.
- 4. Heat exchangers being used in potable water applications must be double wall vented to avoid water contamination.

3.5.3 EXECUTION

- 1. Install heat exchangers with adequate space to allow for disassembly, and removal of equipment and components as per manufacturer recommendations.
- 2. Support heat exchangers per the manufacturer's recommendations.
- 3. Install a minimum of 2 feet of carbon steel piping on the inlet and outlet of heat exchangers. Please note, this does not apply to heat exchangers connected to copper piping.
- 4. Install isolation, purge, and drain valves on the inlet and outlet of all heat exchangers.
- 5. Install appropriate filtration on the inlet of all heat exchangers.
- 6. Install purge and drain valves on the vessels of heat exchangers such as Uturns.
- 7. Install pressure relief valves and lines on the refrigerant side of heat exchangers. Pressure relief valves to be installed between the heat exchanger and the isolation valve of the heat exchanger.
- 8. Install secondary pressure relief valves on the liquid side of ammonia heat exchangers. Secondary pressure relief valves shall be installed between the heat exchanger and the isolation valves of the heat exchanger.
- 9. Insulate heat exchangers operating above 50 °C or below the ambient dew point.
- 10. Insulate heat exchangers operating as condensers or subcoolers when fluid temperatures are greater than 40 °C.
- 11. Insulate heat exchangers with the manufacturer's approved insulation.

- 12. Install drip pans with drain lines below heat exchangers that are susceptible to condensation or frost buildup.
- 13. Install heat exchangers that are operating as evaporators on a raised steel or concrete platform.
- 14. Install evaporators with a minimum of 2" of clearance to allow a 5-gallon bucket to be placed under the oil drain valve.
- 15. Install a 24-in drop leg with sight glass on the condensate outlet of all single circuit condensers, unless otherwise noted.
- 16. All condensers that contain multiple refrigerant circuits must be installed with a minimum 6-foot drop leg on each refrigerant circuit, unless otherwise noted.
- 17. Heat exchangers operating as evaporators and condensers shall be supplied with DDC and visual temperature sensors on the fluid inlet and outlet.
- 18. Heat exchangers operating as evaporators and condensers shall be supplied with DDC and visual pressure and temperature sensors on the refrigeration inlet and outlet.
- 19. Heat exchangers operating as evaporators shall have a level column with a minimum of four sight glasses installed on the refrigerant side. The liquid level sensor shall be located in the sight column.
- 20. Liquid-to-liquid heat exchangers shall be supplied with visual temperature sensors on the inlets and outlets of the heat exchangers.
- 21. Liquid-to-liquid heat exchangers with a capacity greater than 50kW shall be supplied with DDC temperature sensors on the inlets and outlets.
- 22. Liquid-to-air heat exchangers with a capacity greater than 50kW shall be supplied with visual and DDC temperature sensors on the liquid inlet and outlet
- 23. Heat exchangers that are susceptible to frost buildup shall be supplied with aluminum clad insulation. Aluminum clad insulation must allow for disassembly and heat exchanger inspection as required by the manufacturer

3.6 AIR COILS (FLUID)

3.6.1 GENERAL

- 1. The Contractor shall record and provide the following values to the Consultant and the Owner when commissioning an air coil:
 - Coil nameplate data
 - Entering—and leaving—water temperature
 - Water flow rate

- Water pressure drop
- Entering air temperature
- Leaving air temperature
- Airflow

3.6.2 PRODUCTS

- 1. Approved air coil manufacturers are: Colmac, Daikin, Engineered Air, Heatcraft, and Trane.
- Coils are to have AHRI Standard 410 certification and bear the AHRI Symbol. Coils
 outside the scope of the AHRI's standard rating conditions or the manufacturer's
 certification program will be acceptable provided the manufacturer is a current
 member of the AHRI coil certification program, and coils have been rated in
 accordance with AHRI Standard 410.
- 3. Coils shall be designed for a minimum of 1,380 kPa (200 psig) water operating pressure and guaranteed up to 104°C (220°F) working temperature.
- 4. Coils shall be factory tested and must display a tag with inspector's identification as proof of testing.
- 5. Configuration: counterflow design, air to water. Drainagle with threaded plugs in headers for drain and vent. Serpentine type with return bends on smaller sizes and return headers on larger sizes.
- 6. Tubes: Tubing and return bends shall be constructed from 16 mm (5/8") O.D. seamless UNS C12200 copper conforming to ASTM B75 or 16 mm (5/8") O.D. seamless 90/10 Cupronickel alloy C70600. Tubes shall be mechanically expanded to provide a continuous primary to secondary compression bond over the entire coil length for maximum heat transfer. Tube wall thickness to be a minimum of 0.635 mm (0.025 inch). Provide increased wall thickness as required for specified operating pressures and temperatures.
- 7. Fins: plate fin type construction providing uniform support for all coil tubes. Coils are to be manufactured with die-formed aluminum, copper or stainless steel with self-spacing collars which completely cover the entire tube surface. The fin thickness shall be 0.19 mm (0.0075 inch) +/- 5% unless otherwise specified. The manufacturer must be capable of providing self-spacing die-formed fins 4 through 14 fins/inch with a tolerance of +/-4%. Fins to be flat, waffle, or sinewave in a staggered tube pattern to meet performance requirements.
- 8. Rows and Fin Spacing: as required to meet scheduled performance.

- 9. Headers: Seamless UNS C12200, Type L copper material conforming to ASTM B75; Seamless 90/10 Cupronickel alloy C70600; or Carbon steel of Schedule 40. Headers to be complete with factory-installed air vent and drain connections.
- 10. Connections: Copper, schedule 40 steel, or red brass pipe. The type of connection is to be sweat type, MPT or FPT, grooved, or flanged as required for pipe application. Connections shall be of a diameter adequate for the specified water flow rate.
- 11. Casing: coil casing and endplates shall be 1.6 mm (16-gauge), G90 galvanized steel, 2 mm (0.080 inch) thick aluminum, 1.6 mm (0.063") copper, or 16-gauge stainless steel, unless specified otherwise. Provide intermediate tube supports, of the same material as casing, at 1,200 mm (48 inch) maximum spacing. Provide double-flange casing on top and bottom when coils are vertically stacked. Construct casing to eliminate air bypass and moisture carry-over. Provide duct connection flanges.

3.6.3 EXECUTION

- 1. Install coils level and plumb in accordance with manufacturer's written instructions.
- 2. Install coils in ducts and casings to constructed to SMACNA HVAC Duct Construction Standards, Metal, and Flexible.
- 3. Provide duct transitions at duct mounted coils in compliance with applicable SMACNA standards.
- 4. Insulate headers located outside airflow as specified for piping. Refer to Section 8 MECHANICAL INSULATION
- 5. Pipe coils in a counterflow arrangement (i.e., connect the hydronic supply to the leaving air side of the coil).
- 6. Provide unions / flanges at each coil connection as appliable.
- 7. Provide dielectric connections where coil header connection material is dissimilar from piping system.
- 8. For coils located in air handling units, install piping and other exterior system components to facilitate coil removal.
- 9. Provide shut-off valves where indicated on details to allow coils to be disconnected without draining piping.
- 10. Provide manual air vents and drains, complete with isolation valves, at each coil.

11. Hot water coils shall be piped with adequate offsets to minimize stress at header connections due to thermal expansion. If not practical to provide adequate flexibility in this manner, flexible pipe connectors may be used although their use is generally discouraged.

3.7 EXPANSION TANKS

3.7.1 GENERAL

- 1. The Contractor shall record and provide the following values to the Consultant and the Owner when commissioning an expansion tank:
 - Tank nameplate data
 - Air-side charge pressure

3.7.2 PRODUCTS

- 1. Approved manufacturers are: Amtrol, Armstrong, Bell & Gossett, State, Taco, Watts, Wessels, and Wheatley.
- 2. Tank: Welded steel, rated for specified working pressure and 115°C (240°F) maximum operating temperature. Factory test after taps are fabricated and supports installed and labeled in accordance with ASME Boiler and Pressure Vessel Code: Section VIII, Division 1, CSA B51, and provincial regulations.
 - Submit certificate of registration as required by provincial authorities.
- 3. Finish: Red oxide primer or baked enamel finish.
- 4. Bladder: Partial or Full Acceptance as scheduled on drawings; heavy duty butyl or EPDM suitable for system fluid; replaceable; rated for 115°C (240°F) operating temperature; securely sealed into tank to separate air charge from system water to maintain required expansion capacity.
- 5. Air-Charge Fitting: Schrader valve, stainless steel with EPDM seats.
- 6. Factory Pre-Charge: 83 kPa (12 psig); adjust to match initial fill pressure of system.
- 7. Maximum Operating Temperature: 115°C (240°F).
- 8. Maximum Working Pressure: as scheduled on drawings.
- 9. Capacity: as scheduled on drawings.
- 10. Provide saddles for horizontal installation and base mount for vertical installation unless approved for pipe mounting by manufacturer.
- 11. Supports: provide supports with hold down bolts and installation templates incorporating seismic restraint systems.

3.7.3 EXECUTION

- 1. Adjust expansion tank pressure to suit design criteria.
- 2. Install locksheild type valve at inlet to tank.
- 3. Bolt floor mounted units to concrete housekeeping pads. Install seismic slack cables to suspended tanks.
- 4. With tank empty of water, adjust air pre-charge to match system fill pressure.

3.8 DEHUMIDIFIER

3.8.1 GENERAL

1. The Contractor is responsible for performing all structural, electrical, and controls upgrades required by dehumidifiers.

3.8.2 SUBMITTALS

- 1. Submit with delivery of the dehumidifier a copy of the factory inspection and test report. A copy of this report shall also be included with the O&M Manual project closeout data.
- 2. Submit a site inspection and start-up report from the manufacturer's representative.
- 3. Submit a signed copy of the dehumidifier manufacturer's extended warranty, in the name of the Owner, for all dehumidifier rotating mechanical equipment (fan, fan shaft, bearings, sheaves, motor, drive system, and mechanical equipment support) for 4 years following the date of expiration of the 1-year Contract warranty.
- 4. The extended warranty is to be a written, full on-site parts and labour warranty with the same terms and conditions as the Contract warranty.

3.8.3 QUALITY ASSURANCE

- Dehumidifier and all aspects of their installation are to be in accordance with all requirements of the following:
 - All applicable Provincial Codes and Standards
 - ASHRAE Standard 90.1, Energy Standard for Buildings

3.8.4 PRODUCTS

1. The approved dehumidifier is the specified model. Alternate models can be proposed by the Contractor and will be approved at the discretion of the Consultant.

3.8.5 EXECUTION

- 1. Install dehumidifier on a structural steel base or concrete housekeeping pad level and plumb. The Contractor is responsible for structural and/or seismic engineering as specified.
- 2. Provide support under the entire unit base perimeter or cross structural supports under each lifting lug position. Maximum support structure allowable deflection to be L/360 criteria with a maximum 0.5" overall. Maximum deviation from true flat to be 0.25" rise per 10 feet with a maximum of 0.5" overall.
- 3. Provide and install any ladders and/or platforms required for servicing the electrical disconnect, filters and other access doors according to any applicable codes. See the unit drawing for the filter and access doors on the air handler.
- 4. Provide and install all necessary ductwork. Insulated ducting is suggested to help control transmitted noise from the air handler. It is required that all supply ducting from unit be sealed with a vapor barrier.
- 5. The Contractor is responsible for ensuring that when reused, existing structural supports will last the life expectancy of the new dehumidifier, with responsibilities including but not limited to inspection and refinishing.
- 6. Connect gas supply line to the burner gas piping. See the Unit Drawing for size, fuel type and pressure requirements, and the connection location on the air handler.
- 7. Ensure adequate vibration isolation is installed.
- 8. Install components shipped loose with dehumidifier.
- 9. Install fan motors, VFD, and all supporting equipment required for dehumidifier operation.
- 10. Install ducting, dampers, and filters required for the operation of dehumidifier.
- 11. Connect dehumidifier to the control systems and install control wiring in conduit in accordance with electrical work wiring standards.
- 12. Provide and connect the power ground to the chassis ground on the control panel of the unit.

- 13. Provide and connect the line power to the electrical disconnect on the control panel of the unit. See the drawing for values and for the power connection location on the air handler.
- 14. Mount the space temp/dew point transmitter (shipped loose) at the specified location in the controlled space and integrate with the BAS per the drawing package.
- 15. Provide and install interconnecting wiring for customer general alarm contact if desired. Refer to the electrical schematic for connection points.
- 16. Provide and install interconnecting wiring for customer external fault contact if desired. Refer to the electrical schematic for connection points.

END OF SECTION

4 REFRIGERATION PIPING AND VALVES

4.1 GENERAL

4.1.1 CO2 PIPING AND VALVES

- Piping system work is to be in accordance with the following Codes and Standards:
 - CAN/CSA B-52 Mechanical Refrigeration Code
 - CAN/CSA B-51 Boiler Pressure Vessel and Piping Code
 - ASME/ANSI B31.1 Power Piping
 - ASME/ANSI B31.5 Refrigeration and Heat Transfer Components
 - ASHRAE 15 Safety Standard for Refrigeration System
 - ASHRAE Standard 34 Designation and Safety Classification of Refrigerants
 - IIAR2 Ammonia Refrigeration Piping Handbook
- 2. All CO2 piping work is to be in accordance with manufacturer's specifications.

END OF SECTION

5 HYDRONIC PIPING AND VALVES

5.1 GENERAL

5.1.1 QUALITY ASSURANCE

- 1. Piping system work is to be in accordance with the following Codes and Standards:
 - ASTM D 1784 Standard Specification for Rigid PVC Compounds and Chlorinated PVC Compounds
 - ASTM D3035 Standard Spec for PE Pipe (DR-PR) Based on Controlled Outside Diameter
 - ASTM A53, Standard Specification for Pipe, Steel, Black, and Hot-Dipped, Zinc-Coated, Welded and Seamless
 - ASTM A105, Standard Specification for Carbon Steel Forgings for Piping Applications
 - ASTM A536, Standard Specification for Ductile Iron Castings
 - ANSI/ASME B16.4, Cast Iron Threaded Fittings

5.2 PRODUCTS

5.2.1 PIPE, FITTINGS AND JOINTS

- PVC Pipe shall be made from unplasticized PVC compounds having a minimum cell classification of 12454 as defined in ASTM D 1784. The compound shall qualify for Hydrostatic Design Basis (HDB) of 4000 psi for water at 73.4°F, in accordance with the requirements of ASTM D 2837.
- 2. HDPE shall be made from a PE 3408 high density polyethylene resin compound meeting cell classification 345434C per ASTM D3350; and meeting Type III, Class C, Category 5, Grade P34 per ASTM D1238.
- 3. Black Steel Screwed Joint: Mild black carbon steel, Grade B, ERW, ASTM A53, complete with Class 125 cast iron threaded fittings to ANSI/ASME B16.4, and screwed joints.
- 4. Black Steel Grooved End Mechanical Joint: Mild black carbon steel, Grade B, ERW, ASTM A53, factory or site roll grooved, complete with Victaulic Co. (or equal) cast ductile iron grooved end fittings, including full flow elbows, conforming to ASTM A536, and Victaulic Style 77 standard flexible couplings.

5.2.2 SHUT-OFF VALVES

- 1. Butterfly Type: Cast ductile iron, lug body style, 1200 kPa (175 psi) rated butterfly valves, each suitable for bubble-tight dead-end service with the valve closed and either side of the connecting piping removed, and each complete with:
 - a neck to permit 2½" of insulation above the flange
 - a field replaceable EPDM seat
 - a bronze disc (316 stainless steel for brine)
 - a stainless-steel shaft with EPDM seal
- 2. Ball Valve: Lead free, Class 600, 4140 kPa (600 psi) non-shock WOG rated, 2-piece, full port ball type valves, each complete with:
 - a forged brass or bronze body (316 stainless steel for brine)
 - blowout-proof stem
 - solid forged brass or bronze chrome plated ball (316 stainless steel for brine)
 - "Teflon" or PTFE seat
 - a removable coated steel lever handle marked with valve identification
 - ends to suit the piping being connected
- 3. Valves in insulated piping are to be complete with stem extensions.
- 4. Acceptable manufacturers are:
 - Toyo Valve Co.
 - Milwaukee Valve Co.
 - Kitz Corporation
 - Conbraco Industries Inc. Apollo
 - Watts Water Technologies Inc.
- 5. Swing Check Valves
 - In compliance with MSS-SP-71
 - NPS 2-1/2" and over, flanged:
 - ANSI Class 125 (860 kPa)
 - Cast iron body, renewable or re-grindable seat, bronze swing disc, bolted cap
- 6. Silent Check Valves (Spring Type)
 - NPS 2-1/2" through 12", grooved ends
 - 2065 kPa (300 PSI) non-shock W.O.G. rated

 Ductile iron body, electroless nickel plated seat, EPDM coated disk and seals, stainless steel spring and shaft.

5.2.3 PIPELINE STRAINER

- 1. NPS 2 and smaller:
 - Bronze body to ASTM B62.
 - Screwed connections.
 - Y pattern.
- 2. NPS 2-1/2 and larger:
 - Cast ductile iron body to ASTM A536, Grade 65-45-12, grooved ends.
 - Cast steel body to ASTM A278M, Class 30, flanged connections.
- 3. Blowdown connection: NPS 1.
- 4. Screen: stainless steel with 1.19 mm through 3.2 mm perforations.
- 5. Maximum working pressure: 2,065 kPa (300 PSI).

5.2.4 BASKET STRAINER

- 1. Manufacturers: Keckley Company, Metraflex Company, Titan Flow Control, Watts
- 2. Body: ASTM A126, Class B, high-tensile cast iron with bolted cover and bottom drain connection.
- 3. End Connections: Threaded ends for NPS 2 and smaller; flanged ends for NPS 2-1/2 and larger.
- 4. Strainer Screen: 40-mesh startup strainer, and perforated stainless steel basket with 50 percent free area.
- 5. Maximum working pressure: 1,207 kPa (175 PSI).

5.2.5 CIRCUIT BALANCING VALVES

- l. NPS 2 and under:
 - Maximum operating pressure 2,065 kPa (300 PSI).
 - Lead free brass or copper alloy body, double regulating valve, "Y" pattern globe, threaded ends with test points, memory stop and hand wheel providing flow measurement, flow balancing and drip-tight shut-off. 90° 'circuit-setter' style ball valves are not acceptable.
- 2. NPS 2-1/2 and over:
 - Maximum operating pressure 2,065 kPa (300 PSI).

- Cast iron body with flanged connections or ductile iron with grooved ends, double regulating valve "Y" pattern globe, with test points, memory stop and hand wheel providing flow measurement, flow balancing and drip-tight shut-off. 90° 'circuit-setter' style ball valves are not acceptable.
- 3. Include calibration charts and adjustment tools.
- 4. Provide one (1) differential pressure meter kit suitable for direct readout c/w connection hoses suitable for system pressure.

5.3 EXECUTION

5.3.1 DEMOLITION

1. Do all required hydronic piping system demolition/revision work laid out in attached drawing package. Refer to demolition requirements specified in the Mechanical Work section entitled Demolition and Revision Work.

5.3.2 PIPING INSTALLATION REQUIREMENTS

- 1. All low temperature piping, less than 95 °F, is to be PVC or HDPE. Unless otherwise specified PVC piping is to be Sch. 80 and HDPE piping is to be DR 11.
- 2. All high temperature piping, greater or equal to 95 °F, is to be Schedule 40 black steel with MPT ends and FPT fittings and couplings.
- 3. Provide screwed unions or removable mechanical joint couplings in piping at all connections to valves, and at all equipment connections.
- 4. Provide shut-off valves in piping connections to all pieces of major equipment, including but not limited to injection loops, heat exchangers, and pumps.
- 5. Re-use existing retained supports, including vibration isolated seismically restrained supports. Provide new seismic supports where required to properly restrain pipe.
- 6. All piping shall be provided with clearance around systems, equipment, and components for observation of operation, inspection, and servicing. Clearance must meet manufacturers requirements and the National Fire Code of Canada.
- 7. All piping must be installed with enough space to allow for disassembly, removal of equipment and components per manufacturer recommendations.
- 8. All piping transportation water lines greater than two inches shall be installed with butterfly isolation valves.
- 9. All piping transportation water lines smaller or equal to two inches shall be installed with ball isolation valves.

- 10. All branch lines shall be installed with isolation and bypass lines with valves to allow maintenance.
- 11. All drains shall be sloped towards drain.
- 12. Saddle type fittings may be used on branch tees where branch is less than half the size of the main. All saddles must be installed to maintain full inside diameter of branch like prior to welding saddle.
- 13. All dissimilar metals shall be connected with dielectric couplings appropriate for the application.
- 14. All bolt threads shall be lubricated with anti-seize compound.
- 15. All flanges mating to cast iron valve or equipment shall have flat faces.
- 16. Threaded joints in ferrous piping shall have NPT taper screw threads and shall be reamed and deburred before being used.
- 17. All piping which has potential for freezing, water condensation, and heat loss shall be protected by the appropriate insulation, vapor barrier, cladding, and heat trace where required.
- 18. Provide supply and return computer temperature sensors to all appliances and coils.
- 19. Piping shall be installed to prevent air traps. Where required, install air vents at high points and elsewhere, and drains in all low points, drain points, heat transfer outlets and elsewhere to ensure reliable operation and maintenance.
- 20. A pressure test of 50 psig shall be applied to all piping before being put into service. Pressure testing shall be held for 24 hrs. A picture detailing the gauge with a time stamp at the beginning and end of pressure test shall be supplied to the Consultant.
- 21. The Contractor will be responsible for the identification of all piping, valves and equipment installed under this contract. A list of existing valve tag numbers is to be used and added to as required. The Contractor will provide marked up P&IDs listing valve tag numbers at the end of the project.

5.3.3 PIPING SUPPORTS

- 1. All hangers, supports, and sway braces are to be in accordance with MSS SP58.
- 2. All piping is to be installed and supported per piping manufacturer recommendations.
- 3. All hangers located in corrosive environments or outdoors must be stainless steel aluminum, or at a minimum hot dipped galvanized. All hangers inside the mechanical room may be painted or hot dipped galvanized.

- 4. Ensure steel hangers are in tensile load only.
- 5. Cold piping NPS 2 or smaller can be supported by I-beam C clamp with steel cup set screw, locknut and carbon steel retaining clip. Must be UL listed or FM approved.
- 6. Ensure that hanger rod is vertical in operating conditions.
- 7. All outside rooftop riser clamps to be stainless steel, aluminum, or at a minimum hot dipped galvanized.
- 8. Piping supports shall be supported by bolts and only welded upon approval from a structural engineer.
- 9. All clevis plates must be secured with a minimum of 4 concrete inserts, one at each corner.
- 10. Per good piping practice, the following recommended piping support spacing table shall be adhered to. It should be noted that piping transitions, pump inlets and outlets, flanges, valves, and other high piping load concentrations require more support than shown in the table below. In this case, the component or piping manufacturer shall be consulted for recommended piping supports.
- 11. All flexible joint roll grooved piping shall also be supported by at least one hanger at the piping joints.

		MAXIMUM SPACING					
NOMINAL		PVC*					
PIPE SIZE	ROD DIAMETER	STEEL	SCHEDUAL 40	SCHEDUAL 80	COPPER		
≤ 1-1/4"	3/8"	7′	4′	4′	5′		
1 ½"	3/8"	9′	5′	5′	8′		
2"	3/8"	10′	5′	6′	8′		
2 ½"	V ₂ "	11′	6′	6′	9′		
3″	Y ₂ "	12′	6′	7′	10′		
3 ½"	Y ₂ "	13′	6′	7′	11′		
4"	5/8"	14′	6′	7′	12′		
5″	5/8"	16′	6′	7′	13′		
6"	3/4"	17′	7′	9′	14′		
8″	3/4"	19′	8′	9′	16′		
10"	7/8"	22′	8′	10′			
12"	7/8"	23′	9′	10′			
14"	1"	25′	10′	11′			
16"	1"	27′	10′	11′			

- 12. Piping and tubing smaller than 1-in may require more supports to reducing piping vibrations. The Contractor must install sufficient supports to avoid excessive vibration.
- 13. All piping must be supported.
- 14. Constant support hangers will be used when the vertical moment of the pipework is 13 mm or more and variable support will be used where the variation in support effect does not exceed 25% of the total load.
- 15. Piping clamps and supports used on pipe transporting fluid above ambient air temperatures may penetrate through insulation.
- 16. Piping clamps and supports used on piping operating below ambient air temperatures shall not penetrate through insulation.
- 17. All piping shall be installed with appropriate seismic restraints per the geographic location of the project.
- 18. Seismic engineer retained at expense of the Contractor, if required for project.

END OF SECTION

6 DOMESTIC WATER PIPING AND VALVES

6.1 GENERAL

6.1.1 NSF/ANSI 61, DRINKING WATER SYSTEM COMPONENTS-HEALTH EFFECTS

1. All products specified in this Section that are in contact with domestic water are to be NSF/ANSI 61 certified.

6.2 PRODUCTS

6.2.1 PIPE, FITTINGS AND JOINTS

 Hard Copper - Solder Joint: Type "L" hard drawn seamless copper to ASTM B88, complete with wrought copper solder type fittings to ASME/ANSI B16.22 and soldered joints using NSF/ANSI 61 certified silver alloy lead-free solder for cold water pipe, with flux to ASTM B813.

6.2.2 SHUT-OFF VALVES

- 1. Lead free, Class 600, 4140 kPa (600 psi) non-shock WOG rated, 2-piece, full port ball type valves, each complete with a forged brass or bronze body, blowout-proof stem, solid forged brass or bronze chrome plated ball, "Teflon" or "PTFE" seat, a removable coated steel lever handle marked with valve identification and ends to suit the piping being connected. Valves in insulated piping are to be complete with stem extensions. Acceptable manufacturers are:
 - Toyo Valve Co.
 - Milwaukee Valve Co.
 - Kitz Corporation
 - Conbraco Industries Inc. Apollo
 - Watts Water Technologies Inc.

6.3 EXECUTION

6.3.1 DEMOLITION

 Do all required domestic water system demolition work outlined in attached drawing package. Refer to demolition requirements specified in the mechanical work Section entitled Demolition and Revision Work.

6.3.2 PIPING INSTALLATION REQUIREMENTS

- 1. Provide all required domestic water piping.
- 2. Piping is to be Type "L" hard copper with solder joints.
- 3. All piping shall be provided with clearance around systems, equipment, and components for observation of operation, inspection, and servicing. Clearance must meet manufacturers requirements and the National Fire Code of Canada.
- 4. All plate heat exchangers shall be protected by inline filtration systems.
- 5. All piping must be installed with enough space to allow for disassembly and removal of equipment and components per manufacturer recommendations.
- 6. All branch lines shall be installed with isolation and bypass lines with valves to allow for maintenance.
- 7. All drains shall be sloped towards drain.
- 8. Saddle type fittings may be used on branch tees where branch is less than half the size of the main. All saddles must be installed to maintain full inside diameter of branch like prior to welding saddle.
- 9. All dissimilar metals shall be connected with dielectric couplings appropriate for the application.
- 10. All bolt threads shall be lubricated with anti-seize compound.
- 11. All piping which has potential for freezing, water condensation, and heat loss shall be protected by the appropriate insulation, vapor barrier, cladding, and heat tracing where required.
- 12. All piping exposed to the outdoor environment shall be weather-proofed, protected from UV, and insulation protected with aluminium cladding.
- 13. All indoor piping insulation shall be protected by a minimum of PVC cladding.
- 14. Piping shall be installed to prevent air traps. Where required, install air vents at high points, heat transfer coils, and elsewhere and drains in all low points, drain points, heat transfer outlets, and elsewhere to ensure reliable operation and maintenance.
- 15. A pressure test of 50 psig shall be applied to all piping before being put into service. Pressure testing shall be held for 24 hrs. A picture detailing the gauge with a time stamp at the beginning and end of pressure test shall be supplied to The Consultant.

16. The Contractor will be responsible for the identification of all piping, valves and equipment installed under this contract. A list of existing valve tag numbers is to be used and added to as required. The Contractor will provide marked up P&IDs listing valve tag numbers at the end of the project.

6.3.3 PIPING SUPPORTS

- 1. All hangers, supports, and sway braces are to be in accordance with MSS SP58.
- 2. All piping to be installed and supported per piping manufacturer recommendations.
- 3. All hangers located in corrosive environments or outdoors must be stainless steel aluminium, or at a minimum hot dipped galvanized. All hangers inside the mechanical room may be painted or hot dipped galvanized.
- 4. Ensure steel hangers in contact with copper piping are at a minimum epoxy coated.
- 5. All copper piping must be not come into direct contact with steel. Support to be copper plated with black steel at a minimum.
- 6. Ensure steel hangers are in tensile load only.
- 7. Cold piping NPS 2 or smaller can be supported by I-beam C clamp with steel cup set screw, locknut and carbon steel retaining clip. Must be UL listed or FM approved.
- 8. Ensure that hanger rod is vertical in operating conditions.
- 9. All outside rooftop riser clamps to be stainless steel, aluminium, or at a minimum hot dipped galvanized.
- 10. Piping supports shall be supported by bolts and only welded upon approval from a structural engineer.
- 11. All clevis plates must be secured with a minimum of 4 concrete inserts, one at each corner.
- 12. Per good piping practice, the following copper piping support spacing table shall be adhered to. It should be noted that piping transitions, pump inlets and outlets, flanges, valves, and other high piping load concentrations require more support than shown in the table below. In this case, the component or piping manufacturer shall be consulted for recommended piping supports.

110141141		MAXIMUM SPACING						
NOMINAL PIPE SIZE	ROD DIAMETER	PVC*						
PIPE SIZE		STEEL	SCHEDUAL 40	SCHEDUAL 80	COPPER			
3/8" - 1 1/4"	3/8"	7′	4′	4′	5′			
1 ½"	3/8"	9′	5′	5′	8′			
2"	3/8"	10′	5′	6′	8′			
2 ½"	1/2"	11′	6′	6′	9′			
3″	1/2"	12′	6′	7′	10′			
3 ½"	1/2"	13′	6′	7′	11′			
4"	5/8"	14′	6′	7′	12′			
5″	5/8"	16′	6′	7′	13′			
6"	3/4"	17′	7′	9′	14′			
8"	3/4"	19′	8′	9′	16′			
10"	7/8"	22′	8′	10′				
12"	7/8"	23′	9′	10′				
14"]"	25′	10′	11′				
16"	1"	27′	10′	11′				

- 13. Piping and tubing smaller than 1-in may require more supports to reduce piping vibrations. The Contractor must install sufficient supports to avoid excessive vibration.
- 14. All piping must be supported.
- 15. Constant support hangers will be used when the vertical moment of the pipework is 13 mm or more and variable support will be used where the variation in support effect does not exceed 25% of the total load.
- 16. Piping clamps and supports used on pipe transporting fluid above ambient air temperatures may penetrate through insulation.
- 17. Piping clamps and supports used on piping operating below ambient air temperatures shall not penetrate through insulation.

END OF SECTION

7 STANDARD DUCTWORK

7.1 GENERAL

7.1.1 SUBMITTALS

- 1. **Product Data**: Submit product data sheets for all products specified in this Section except shop fabricated ductwork and fittings.
- 2. **Test Data**: Submit successful duct leakage test data prior to ductwork being covered from view.

7.1.2 QUALITY ASSURANCE

- 1. Ductwork is to be in accordance with requirements of the following Standards:
- 2. ASTM A653, Standard Specification for Steel Sheet, Zinc-Coated (Galvanized) or Zinc-Iron Coated (Galvannealed) by the Hot-Dip Process
- 3. ANSI/SMACNA HVAC Duct Construction Standards- Metal and Flexible
- 4. NFPA 90A, Standard for the Installation of Air-Conditioning and Ventilation Systems
- 5. CAN/ULC-S110, Standard Methods of Test for Air Ducts
- 6. CAN/ULC-S102, Standard Method of Test for Surface Burning Characteristics of Building Materials and Assemblies

7.2 PRODUCTS

7.2.1 GALVANIZED STEEL DUCTWORK

- 1. **General:** Galvanized steel sheet is to be hot dipped in accordance with requirements of ASTM A653. Galvanizing for bare uncovered duct to be finish painted is to be G60. All other galvanizing is to be G90.
- 2. **Rectangular:** Lock forming grade hot dip galvanized steel, ASTM A653, shop fabricated, minimum #26 gauge.
- 3. **Round:** Factory machine fabricated, spiral, mechanically locked flat seam, single wall duct, fittings, and couplings. Use full throat spiral elbows. Short throat spiral elbows can be substituted if approved by the Consultant.
- 4. Flat Oval: Factory machine fabricated, single wall, 4-ply spiral lock seam duct, fittings, and couplings.

7.2.2 FLEXIBLE METALLIC DUCTWORK

- 1. Bare: Spirally wound, semi-rigid, self-supporting corrugated aluminum duct with continuous triple lock seams, ANSI/SMACNA Form "M-UN", ULC-S110 listed and labelled as a Class 1 Air Duct, constructed of dead soft aluminum strip, and supplied in 3 m (10-ft) lengths.
- 2. **Insulated**: Spirally wound, semi-rigid, self-supporting corrugated aluminum duct with continuous triple lock seams, ANSI/SMACNA Form "M-I", ULC-S110 listed and labelled as a Class 1 Air Duct, constructed of dead soft aluminum strip, supplied in 3 m (10-ft) lengths and factory covered with 40 mm (1-½-in) thick, 12 kg/m3 (0.75 lb/ft³) density, minimum 6 R-value fibreglass insulation with a vinyl jacket meeting flame spread and smoke developed requirements of CAN/ULC-S102.

7.2.3 METAL DUCT SYSTEM JOINT SEALANT

1. ULC listed and labelled, premium grade, grey colour, water base, non-flammable duct sealer, brush, or gun applied, with a CAN/ULC S102 maximum flame spread rating of 5 and smoke developed rating of 0.

7.2.4 FLEXIBLE FABRIC DUCTWORK (DUCTSOX)

1. Equal to DuctSox Corp. round fabric air duct, 25/50 rated in accordance with CAN/ULC S102, white or coloured (to manufacturer's standards), and complete with 3 x 1 tension cable suspension system.

7.2.5 ACOUSTIC LINING

Minimum 25 mm (1-in) thick acoustic lining material meeting NFPA 90A requirements and flame spread and smoke developed fire hazard ratings of CAN/ULC-S102, flexible for round ducts, board type for rectangular ducts, consisting of a bonded fiberglass mat coated on the inside (airside) face with a black fire-resistant coating.

7.3 EXECUTION

7.3.1 DEMOLITION

 Do all required standard ductwork system demolition/revision work. Refer to demolition requirements specified in the mechanical work Section entitled Demolition and Revision Work.

7.3.2 FABRICATION AND INSTALLATION OF GALVANIZED STEEL DUCTWORK

- Provide all required standard galvanized steel ductwork, rectangular and/or round and/or flat oval as shown. Note that where rectangular ductwork is shown, round or flat oval ductwork of equivalent cross-sectional area is acceptable.
- 2. Unless otherwise specified, construct and install ductwork in accordance with ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible to suit the duct pressure class designation of minimum 500 Pa (2 in-wg) positive or negative as applicable, a maximum velocity of 10 m/s (2000 fpm), and so that the ductwork does not "drum". All flat surfaces of rectangular ductwork are to be cross-broken. Duct system sealing is to meet ANSI/SMACNA Seal Class A requirements.
- 3. Variable air volume ductwork from supply fans to boxes is to be as above but rectangular duct take-offs are to be double side straight taper type with a take-off length equal to 0.5 times the branch duct width but minimum 150 mm (6-in) length, and the double taper side is to have an included angle of minimum 60°.
- 4. Duct Routing and Dimensions: Confirm the routing of all ductwork at the site and site measure ductwork prior to fabrication. Note that duct dimensions may be revised to suit site routing and building element requirements if dimension revisions are reviewed with and approved by the Consultant. Duct routing and/or dimension revisions to suit conditions at the site are not grounds for a claim for an extra cost.
- 5. Ducts Run Within or Through OWSJ: Refer to structural drawings. Where ductwork is to be run within or through open web steel joists, note that ductwork shown on the mechanical drawings is schematic only and is to be altered as required to suit the steel joist configuration, spacing, panel points, and cross-bridging at no additional cost.
- 6. Ductwork Located at Sprayed Fireproofing: Wherever ductwork is required at locations where sprayed fireproofing is applied to building construction, install the ductwork only after the fireproofing work is complete and do not compromise the fire rating of the sprayed fireproofing.
- 7. **Automatic Control Components:** Install (but do not connect) all duct system mounted automatic control components supplied as part of the automatic control work.
- 8. **Heat Transfer Equipment Connections:** Where indicated, provide duct connections to fan powered heat transfer equipment with integral coils.

- 9. Separate Hot Water Reheat Coils: Flange connect ductwork to hot water reheat coils in accordance with requirements of ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible. The coils will be suspended independent of connecting ductwork as part of the heat transfer work.
- 10. Rectangular Duct Support Inside Building: Support horizontal rectangular ducts inside the building in accordance with ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible, but use trapeze hangers with, unless otherwise specified, galvanized steel channels, and galvanized steel hanger rods for all ducts that are exposed, and all concealed ducts wider than 500 mm (20-in).
- 11. Round and Flat Oval Duct Support Inside Building: Support round and flat oval ducts inside the building in accordance with ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible, but, unless otherwise specified, for both uninsulated and insulated ducts exposed in finished areas, use bands and secure at the top of the duct to a hanger rod, all similar to Ductmate Canada Ltd. type "BA". If the duct is insulated, size the strap to suit the diameter of the insulated duct.
- 12. **Flanged Duct Joints:** Where flanged duct joints are used, do not locate the joints in wall or slab openings, or immediately at wall or slab openings.
- 13. **Support of Roof Mounted Ducts**: As specified in the mechanical work Section entitled Duct System Dampers and Accessories.
- 14. Watertight Ductwork: Where watertight horizontal ductwork is required, construct the ducts without bottom longitudinal seams. Solder or weld the joints of bottom and side sheets. Seal all other joints with duct sealer. Slope horizontal duct to hoods, risers, or drain points. Provide drain points. Provide watertight ductwork for all galvanized steel ductwork outside the building or otherwise exposed to the elements including fresh air intakes and wherever else shown or specified.
- 15. Leakage Testing: Leakage testing is to be performed in accordance with the SMACNA HVAC Air Duct Leakage Test Manual. Submit reports of successful testing to the Consultant. Leakage test rectangular supply and return ducts. Spiral duct and elbows with properly sealed joints can be excluded from leakage testing.
- 16. **Application of Sealants**: Apply sealants by brush or gun to cleaned metal surfaces. Where bare ductwork is exposed apply neat uniform lines of sealant. Randomly brushed, sloppy looking sealant applications will be rejected and must be repaired or replaced with a neat application of the sealant.

- 17. **SMACNA Seal Class A**: All transverse joints and longitudinal seams and duct wall penetrations shall be sealed. Pressure sensitive tape shall not be used as primary sealant. Max. 2 to 5 percent total system leakage.
- 18. Protective Coating for Exposed Exterior Ducts: Clean exterior exposed (uninsulated) ducts with a heavy full coverage of black metal paint equal to Bakor #410-02.
- 19. Connection of Dissimilar Metal Ducts: Where dissimilar metal ducts are to be connected, isolate the ducts by means of flexible duct connection material as specified in the Section entitled Duct System Dampers and Accessories.
- 20. Exposed Round Gymnasium Ductwork: All round exposed ductwork in the Gymnasium is to be two metal gauges heavier than the standard metal gauge for the same size duct, and duct hangers are to be pairs of 9.5mm (3%-in) diameter hanger rods secured to 40 mm (1-½-in) wide #12-gauge galvanized steel split clamps around the full circumference of the duct at maximum 1.8 m (72-in) centres. Double nuts and lock washers are to be provided on each hanger rod above and below each clamp.
- 21. Seismic Requirements: In addition to ANSI/SMACNA duct construction standards specified above, ductwork is to be constructed and installed to meet seismic requirements of the Building Code and ANSI/SMACNA The Seismic Restraint Manual: Guidelines for Mechanical Systems.

7.3.3 INSTALLATION OF FLEXIBLE DUCTWORK

- 1. Provide maximum Im (40-in) long lengths of flexible ductwork for connections between galvanized steel duct mains and branches, and necks of ceiling grilles and diffusers. Do not install flexible ductwork through walls, even if shown on the drawings. Stretch out lengths of duct prior to cutting and installation.
- 2. At rectangular galvanized steel duct, accurately cut holes and provide side take-offs for flexible duct. Seal joints with duct sealer.
- 3. Install flexible ducts as straight as possible and support in accordance with requirements of ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible, and secure at each end with nylon or stainless-steel gear type clamps, and seal joints. Provide long radius duct bends where they are required.
- 4. Do not penetrate fire barriers with flexible duct.

7.3.4 INSTALLATION OF FABRIC DUCTWORK (DUCTSOX)

1. Provide fabric ductwork where shown.

- 2. Secure the duct from the structure by means of tension cable and suspension components supplied with the ductwork.
- 3. Install the tension cable and suspension components in accordance with the duct manufacturer's instructions.
- 4. Provide metal duct connection collars as required.
- 5. Start-up the fabric duct system in accordance with the manufacturer's instructions.
- 6. Do not penetrate fire barriers with fabric duct.

7.3.5 INSTALLATION OF ACOUSTIC LINING

- 1. Provide acoustic lining in ductwork in locations as follows:
 - wherever shown and/or specified on the drawings
 - supply ductwork downstream of air terminal boxes for 2.4 m (8-ft) measured along the duct and outward from the box in all directions
 - for all transfer air ducts
- 2. Install lining in accordance with requirements of ANSI/SMACNA HVAC Duct Construction Standards Metal and Flexible, however, for all installations regardless of velocity, at leading and trailing edges of duct liner sections, provide galvanized steel nosing channel as per the detail entitled Flexible Duct Liner Installation found in the ANSI/SMACNA manual referred to above.

7.3.6 DUCT SYSTEM PROTECTION, CLEANING AND START-UP

- 1. Temporarily cover all open ends of new ducts during transportation, storage, and construction.
- 2. Vacuum all dirt and foreign matter from the entire duct systems and clean duct system terminals and the interior of air handling units prior to operating fans.
- 3. Prior to starting any supply air handling system provide 50 mm (2-in) thick glass fibre construction filters at fan equipment in place of permanent filters.
- 4. Provide cheesecloth over all duct system inlets and outlets and run the system for twenty-four hours, after which remove the cheesecloth, the construction filters, and install new permanent filters.

5. Include all labour for a complete site walk-through with testing and balancing personnel following the route of all duct systems to be tested, adjusted, and balanced for the purpose of confirming the proper position and attitude of dampers, the location of pitot tube openings, and any other work affecting the testing and balancing procedures. Perform all corrective work required as a result of this walk-through.

7.3.7 TESTING, ADJUSTING AND BALANCING

1. When work is complete and equipment is operating as intended, test, adjust and balance air flows and temperatures in accordance with requirements specified in the drawings.

END OF SECTION

8 MECHANICAL INSULATION

8.1 GENERAL

8.1.1 APPLICATION

1. This Section specifies thermal insulation requirements that are common to mechanical work Sections of the Specification. It is a supplement to each Section and is to be read accordingly.

8.1.2 SUBMITALS

- Product Data Sheets & WHMIS Sheets: Product data sheets must confirm that the product conforms to requirements of referenced Codes, Standards, and material properties.
- 2. Fire Rated Duct Wrap Certification Letter: As per Part 3 of this Section, submit a letter from the fire rated duct wrap supplier to certify that the duct wrap has been properly installed.

8.1.3 QUALITY ASSURANCE

- 1. The company with the sub-contract for mechanical insulation work is to be a member in good standing of the Thermal Insulation Association of Canada.
- 2. Mechanical insulation requirements specified in this Section are based on the Thermal Insulation Association of Canada Best Practices Guide.
- 3. Mechanical insulation is to be applied by journeyman tradespersons in the Heat and Frost Insulation Trade. Registered apprentice tradespersons must be under direct, daily, on-site supervision of a journeyman.

8.1.4 DEFINITIONS

For the work of this Section:

- Concealed means mechanical services and equipment above suspended ceilings, in non-accessible chases, in accessible pipe spaces, and furred-in spaces.
- 2. **Exposed** means exposed to normal view during normal conditions and operations.
- 3. **Domestic Water** means all piping (cold, hot, tempered) extended from the building Municipal supply main.

- 4. **WHMIS Sheets** means Workplace Hazardous Materials Information System sheets.
- 5. **Mineral Fibre** means a type of insulation manufactured from molten rock, slag, or glass in accordance with requirements of ASTM C547.
- 6. PEX means cross-linked polyethylene.
- 7. **Insulation System** means insulation material, fasteners, jacket, and any other accessory.
- 8. TIAC means Thermal Insulation Association of Canada.

8.2 PRODUCTS

8.2.1 INSTALLATION

1. It is the responsibility of the Contractor to ensure that all the proper piping, valves, vessels, and equipment are insulated, per the drawing package and specification documents.

8.2.2 ACCEPTABLE INSULATION PRODUCT MANUFACTURERS

1. Acceptable insulation product manufacturers are listed in Section 4, Products, of the TICA Best Practices Guide.

8.2.3 FIRE HAZARD RATINGS

 Unless otherwise specified, all insulation system materials inside the building and above ground must have a fire hazard rating of not more than 25 for flame spread and 50 for smoke developed when tested in accordance with CAN/ULC-S102, Surface Burning Characteristics of Building Materials and Assemblies.

8.2.4 THERMAL PERFORMANCE

1. Unless otherwise specified, thermal performance, i.e. conductivity, of insulation is to meet or exceed the values given in the National Energy Code of Canada for Buildings, and ASHRAE/IES Standard 90.1.

8.2.5 PIPE INSULATION MATERIALS

Horizontal Pipe Insulation at Hangers & Supports: Insulated pipe support inserts consisting of minimum 150 mm (6-in) long, pre-molded, rigid, sectional phenolic foam or fiberglass insulation (of same thickness as adjoining insulation) with a reinforced foil and kraft paper vapour barrier jacket and a 180° captive galvanized steel saddle. Acceptable products are:

- 2. Belform Insulation Ltd. "Koolphen K-Block"
- 3. Shur-Fit Products Ltd. "Pro-Pipe Supports"
- 4. Specialty Insulation for Piping: Factory fabricated foamed glass or closed cell foamed plastic insulation fittings specifically made for pipe mechanical joint fittings and couplings, and pipe risers at riser clamps. Acceptable manufacturers are:
- 5. Shur-Fit Products Ltd.
- 6. Armacell Canada Inc.
- 7. Owens Corning "FOAMGLASS"
- 8. Hot Piping Insulation (50 °C inside and 25 °C outside): TIAC Standard 1501, Code A2, Preformed Mineral Fibre: Rigid, sectional, sleeve type insulation to ASTM Standard C 547, Standard Specification for Mineral Fibre Pipe Insulation, supplied in 915 mm (3') lengths with a factory applied vapour barrier jacket and adhesive jacket closure to ASTM C1136, Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation, with a maximum thermal conductivity of 0.033 W/mK @ 24 °C.
- 9. Cold Piping (Operating below the ambient dew point and above 0 °C) TIAC Standard 1501, Code A6, Flexible Foam Elastomeric: Closed cell, sleeve type, longitudinally split self-seal, foamed plastic pipe insulation in accordance with requirements of ASTM C534, Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form, maximum thermal conductivity of 0.039 W/mK @ 24 °C, minimum density of 96 kg/m³, and supplied with all required installation accessories.
- 10. Cold Piping Insulation: XPS Extruded Styrofoam (Below 0 °C): Rigid, sectional, insulation used for cold piping. With a service temperature range of -297 °F to 165 °F (-183 °C to 74 °C).

8.2.6 EQUIPMENT INSULATION MATERIALS

1. Hot Equipment (Operating above 50 °C) TIAC Standard 1501, Code A6, Flexible Foam Elastomeric: Closed cell. Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form, maximum thermal conductivity of 0.039 W/mK @ 24 °C, minimum density of 96 kg/m³, and supplied with all required installation accessories.

- 2. Cold Equipment (Operating below the ambient dew point and above 0 °C) TIAC Standard 1501, Code A6, Flexible Foam Elastomeric: Closed cell. Standard Specification for Preformed Flexible Elastomeric Cellular Thermal Insulation in Sheet and Tubular Form, maximum thermal conductivity of 0.039 W/mK @ 24 °C, minimum density of 96 kg/m³, and supplied with all required installation accessories.
- 3. Cold Equipment Insulation: XPS Extruded Styrofoam (Below 0 °C): Rigid, sectional, insulation used for cold piping. With a service temperature range of -297 °F to 165 °F (-183 °C to 74 °C).

8.2.7 DUCTWORK SYSTEM INSULATION MATERIALS

- 1. TIAC Standard 1502, Code A2, Rigid Mineral Fibre Board: Preformed board type insulation to ASTM C612, Standard Specification for Mineral Fiber Block and Board Thermal Insulation, with a factory applied reinforced aluminum foil and Kraft paper facing to ASTM C1136, Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation, a minimum thermal conductivity of 0.033 W @ 24 °C, and a minimum density of 48 kg/m³.
- 2. TIAC Standard 1502, Code B2, Flexible Mineral Fibre: Roll form insulation to ASTM C1290, Standard Specification for Fibrous Glass Blanket Insulation Used to Externally Insulate HVAC Ducts, with a factory applied vapour barrier facing to ASTM C1136, Standard Specification for Flexible, Low Permeance Vapor Retarders for Thermal Insulation, a minimum thermal conductivity of 0.042 W @ 24 °C, and a minimum density of 12 kg/m³.

8.2.8 PIPE PROTECTION

- Prior to insulating, all ferrous piping operating with fluids below the ambient dew point must be coated with either epoxy primer and epoxy painted or Polyguard Rg-2400 LT.
- 2. Factory painted equipment or piping does not require paint unless the type of paint is not approved for use in the specified area, or the factory coating is damaged, scuffed, or chipped.
- 3. The Contractor is responsible for ensuring that all insulated equipment and piping that has not received the treatment listed in section 8.2.8 is stripped of insulation, treated as listed in section 8.2.8, and re-insulated.

8.2.9 INSULATION FASTENINGS

- 1. Aluminium Jacketing Stainless Steel Banding: Equal to Childers Products Co. "FABSTRAPS" 0.6 mm (1/16-in) thick, minimum 12 mm (½-in) wide type 304 stainless steel strapping.
- 2. **Tape Sealant**: Equal to MACtac Canada Ltd. self-adhesive insulation tapes, types PAF, FSK, ASJ, or SWV as required to match the surface being sealed.
- 3. Adhesive Mineral Fibre Insulation: Clear, pressure sensitive, brush consistency adhesive, suitable for a temperature range of -20 °C to 82 °C (-4 °F to 180 °F), compatible with the type of material to be secured, and WHMIS classified as non-hazardous.
- 4. Adhesive Closed Cell Foamed Glass Insulation: Equal to Pittsburgh Corning PC88 multi-purpose two-component adhesive.
- 5. Lagging Adhesive: White, brush consistency, ULC listed and labelled, 25/50 fire/smoke rated lagging adhesive for canvas jacket fabric, suitable for colour tinting, complete with fungicide and washable when dry.
- 6. Sheet Metal Screws: No. 10 stainless steel sheet metal screws.

8.2.10 INSULATION VAPOUR BARRIOR

- 1. All vapour barrier to have a permeance rating less than or equal to .02 Perm.
- 2. All Hot Piping Insulation shall be supplied with manufacturers vapour barrier.
- 3. All Styrofoam XPS Extruded Styrofoam insulation shall have a factory applied vapour barrier. Alternatively, the insulation may be covered with a field applied, Henry Blueskin SA, winter grade.
- 4. ITW Saran 520 tape to be used to seal piping vapour barrier.
- 5. All butt seams in Saran vapour barrier to be taped with 3" wide Saran 520 tape or Venture Clad Cryogenic Tape.
- 6. All valves, fittings, and other equipment to have vapour barrier of ITW Insulation Saran 560 or Venture Clad Cryogenic tape. Vapour barrier and tape must be applied per manufacturer's specifications.

8.2.11 INSULATION JACKETS AND FINISHES

1. PVC Jacketing to be Used on Interior Piping, Valves, and Equipment: TIAC Code C1, PVC: Roll form sheet and fitting covers in accordance with ASTM D1784, Standard Specification for Rigid Poly(Vinyl Chloride) (PVC) and Chlorinated Poly(Vinyl Chloride) (CPVC) Compounds, minimum 15 mil thick, white, PVC, 25/50 rated, complete with installation and sealing accessories.

- 2. Aluminum Jacketing Exterior Piping Insulation, Valves, and Equipment: TIAC Code C2, Rigid Aluminum: Equal to Childers Metals "Lock-on" 0.020" thick stucco embossed aluminum jacket material to ASTM B209, Standard Specification for Aluminum and Aluminum-Alloy Sheet and Plate, factory cut to size and complete with PolyFilm Moisture Barrier (PFMB) and continuous modified Pittsburgh Z-Lock, and "Fabstraps" and butt straps to cover end to end joints. Fittings are to be 2-piece epoxy coated pressed aluminum with weather locking edges.
- 3. All insulation inside the building 7 feet above grade shall be finished with 0.020" thick, white PVC with a self-seal lap.
- 4. All insulation inside of the building below 7 feet from grade shall be finished with 0.030" thick, white PVC with a self-seal lap.
- 5. All insulation exposed to the outdoors, inside the mechanical room, and outside shall be jacketed with 16 mil, stucco embossed, anodized aluminum.

8.2.12 REMOVABLE/REUSABLE INSULATION COVERS

- Valve, Etc. Covers: Custom manufactured covers conforming to the shape of the item to be insulated, designed to be easily removable and replaceable to suit the use and maintenance procedures of the particular item, and to provide adequate personnel protection. All equipment cover insulation and access locations must be approved by the Consultant.
- Equipment Covers: Custom manufactured covers conforming to the shape of the item to be insulated, designed to be easily removable and replaceable to suit the use and maintenance procedures of the particular item, and to provide adequate personnel protection. All equipment cover insulation and access locations must be approved by the Consultant.

8.3 EXECUTION

8.3.1 GENERAL INSULATION APPLICATION REQUIREMENTS

- 1. Unless otherwise specified, do not insulate the following:
 - Factory insulated equipment and piping
 - Brine Pumps used below the ambient dew point.
 - Domestic water and heating system expansion tanks
- 2. Do not apply insulation unless piping leakage tests have been satisfactorily completed.
- 3. Ensure that all surfaces to be insulated are clean and dry.

- 4. Ensure that the ambient temperature is minimum 13 °C (55 °F) for at least one day prior to the application of insulation, and for the duration of insulation work, and that relative humidity is and will be at a level such that mildew will not form on insulation materials.
- 5. All insulation materials must be stored on site in a proper and dry storage area. Any wet insulation material is to be removed from the site and replaced. Any costs incurred due to storing, removing, and/or replacing insulation materials are the responsibility of the Contractor.
- 6. Install hot piping insulation directly over pipes and not over hangers and supports.
- 7. Install high density jacketing insulation inserts at hangers and supports.
- 8. Install piping insulation and jacket continuous through pipe openings and sleeves.
- 9. All insulation shall be installed with appropriate vapor barriers with a permeance rating less than or equal to 0.02 Perms. Mineral insulation may be installed with factory applied vapour-retardant jacket.
- 10. All joints shall be taped to prevent a break in the vapour barrier.
- 11. Caulk all joints and fittings in jacketing with a colour matching sealant.
- 12. Ensure water shedding on all installed jacketing.
- 13. Stainless banding must be installed wherever aluminum jacketing or cold piping insulation (< 0C) is used. Banding must be provided at all circumferential edges and not more than 12" between centers.
- 14. All damage and dents shall be removed.
- 15. Exterior surfaces shall be cleaned of any dirt, oil, or other contaminants.
- 16. When insulating "cold" piping and equipment, extend insulation up valve bodies and other such projections as far as possible, and protect the insulation jacketing from the action of condensation at its junction with the metal.
- 17. When insulating vertical piping risers 75 mm (3-in) diameter and larger, use insulation support rings welded directly above the lowest pipe fitting, and thereafter at 4.5 m (15-ft) centres and at each valve and flange. Insulate as per Thermal Insulation Association of Canada National Insulation Standards, Figure No. 9.
- 18. Where insulation is terminated at valves, equipment, unions, etc., neatly cover the exposed end of the insulation with a purpose made PVC or aluminum cover.

- 19. Carefully and neatly gouge out insulation for proper fit where there is interference between weld bead, mechanical joints, etc., and insulation. Bevel away from studs and nuts to permit their removal without damage to insulation, and closely and neatly trim around extending parts of pipe saddles.
- 20. Where thermometers, gauges, and similar instruments occur in insulated piping, and where access to heat transfer piping balancing valve ports and similar items are required, create a neat, properly sized hole in the insulation and provide a suitable grommet in the opening.
- 21. Insulate, vapour seal, and finish all seismic restraints, braces, anchors, hanger rods, and similar hardware directly connected to "cold" piping and/or equipment, for a distance of 300mm (12") clear of the adjacent pipe or equipment finish, to match the piping and/or equipment insulation.
- 22. Where existing insulation work is damaged because of new mechanical work, repair the damaged insulation work to new work standards.
- 23. Fire stop penetrations shall be insulated with Closed Cell Foamed Glass insulation. Closed Cell Foamed Glass segments must match adjacent insulation (diameter and joint type).
- 24. Combustible pipes penetrating fire rated partitions must use intumescent fire stop collars, Hilti Firestop Collar, or approved equal installed in accordance with the manufacturer's instructions.

8.3.2 COLD PIPING INSULATION USING XPS EXTRUDED STYROFOAM

- 1. All shut-off valves and elbows to be factory fabricated.
- 2. All elbow joints to be tongue and groove.
- 3. All vessel head insulation to be factory fabricated to match the geometry and contour of the vessel head. All vessel head insulation of 2" or more thickness must be double layer.
- 4. All Styrofoam PIB pipe insulation 2" and less thickness shall have longitudinal joint of the tongue and groove or ship-lap style joint.
- 5. All Styrofoam PIB insulation over 2" thick shall be double layer.
- 6. All piping and vessel sidewall insulation to be supplied in 36" long segments.
- 7. All insulation 20" finished diameter and smaller to be taped with filament tape every 9".
- 8. All insulation over 20" finished diameter to be secured with ½" stainless steel banding every 9". Prior to application of vapor barrier, sharp edges must be flattened to prevent damage to vapor barrier.

- 9. Apply a non-setting, low temperature joint sealant on all longitudinal and butt joints. On double and triple layer applications, apply joint sealant on second and third layers only.
- 10. Provide vapor stops on valves, end caps and termination points.

8.3.3 INSULATION FOR PIPE MECAHNICAL JOINT FITTINGS & COUPLINGS, ETC.

 Provide manufactured insulation fittings, the same thickness as the adjoining pipe insulation, for mechanical joint fittings and couplings, and for piping at riser clamps through the floor. Cover with purpose made PVC or aluminium covers or jacketing sealed with tape.

8.3.4 INSULATION FOR HORIZONTAL PIPE AT HANGERS AND SUPPORTS

- 1. At each hanger and support location for piping 50 mm (2") diameter and larger and scheduled to be insulated, except where roller hangers and/or supports are required, and unless otherwise specified, supply a factory fabricated section of phenolic foam pipe insulation with integral vapour barrier jacket and captive galvanized steel shield. Supply the insulation sections to the piping installers for installation as the pipe is erected.
- 2. For 100 mm (4") diameter and larger heating system piping where roller type hangers and supports are provided, a steel saddle will be tack welded to the pipe at each roller hanger or support location. Pack saddle voids with loose mineral fibre insulation.

8.3.5 PIPE INSULATION REQUIREMENTS – INSIDE BUILDING & ABOVE GROUND (TEMPERATURE RANGE ABOVE 50 °C)

- 1. Insulate pipe inside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
- 2. Material: Type A3 mineral fibre, factor applied vapour barrier and PVC cladding.
- 3. Insulation application: 1501-H for hot piping.
- 4. Insulation finish: CPF/4 PVC jacket for exposed piping

PIPE SERVICE	DIAMETER	INSULATION THICKNESS
DOMESTIC LICT WATER CURRING PEOPLO HATION	TO 40 MM	25 MM
DOMESTIC HOT WATER, SUPPLY & RECIRCULATION	LARGER THAN 40 MM	50 MM
TEMPERED DOMESTIC WATER	ALL	25 MM
LOW DDECCLIDE (140 KDA) CTEANA	TO 40 MM	25 MM
LOW PRESSURE (140 KPA) STEAM	LARGER THAN 40 MM	50 MM
LOW DDESCRIPE CONDENSATE	TO 40 MM	25 MM
LOW PRESSURE CONDENSATE	LARGER THAN 40 MM	50 MM
A FOUND DESCRIPT (140, 415 VDA) OTFALA	TO 40 MM	40 MM
MEDIUM PRESSURE (140-415 KPA) STEAM	LARGER THAN 40 MM	50 MM
MEDILINA DEFOCUES CONDENIGATE	TO 40 MM	40 MM
MEDIUM PRESSURE CONDENSATE	LARGER THAN 40 MM	50MM
STEAM BOILER FEED WATER	ALL	40 MM
STEAM BOILER BLOWDOWN	ALL	40 MM
REFRIGERANT SUCTION & HOT GAS (SEE NOTE # 1)	ALL	25 MM
REFRIGERANT HOT GAS BY-PASS (SEE NOTE # 1)	ALL	25 MM
HEAT PUMP EARTH LOOP	ALL	25 MM
LIEATING WATER GURRING RETURN	TO 50 MM	25 MM
HEATING WATER, SUPPLY & RETURN	LARGER THAN 50 MM	40 MM
HEATING GLYCOL SOLUTION, SUPPLY & RETURN	TO 50 MM	25 MM
CHILLED GLYCOL SOLUTION, SUPPLY & RETURN	LARGER THAN 50 MM	40 MM
	TO 50 MM	25 MM
PIPING TO BE TRACED WITH HEATING CABLE	LARGER THAN 50 MM	40 MM

- 5. TIAC Standard 1501 Code A6 foamed elastomeric insulation may be used in lieu of Type A2, with 1501-CA application and specified finish.
- 8.3.6 PIPE INSULATION REQUIREMENTS INSIDE BUILDING & ABOVE GROUND (TEMPERATURE RANGE BELOW HIGHEST AMBIENT DEW POINT AND ABOVE 0 °C)
 - 1. Insulate pipe inside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
 - Material: Flexible Foam Elastomeric, with vapour barrier, and PVC jacketing
 - Insulation application: 1501-C for cold piping
 - Insulation finish: CPF/4 PVC jacket for exposed piping

Table 1 Pipe Requirements Inside Above 0 °C

PIPE SERVICE	DIAMETER	INSULATION THICKNESS
CHILLED WATER CHRRING RETURN	TO 100 MM	25 MM
CHILLED WATER SUPPLY & RETURN	LARGER THAN 100 MM	40 MM
OLULED OLVOOL COLUTION CURRLY C RETURN	TO 100 MM	25 MM
CHILLED GLYCOL SOLUTION SUPPLY & RETURN	LARGER THAN 100 MM	40 MM
REFRIGERANT SUCTION LINES	ALL	25 MM
HEAT PUMP EARTH LOOP	ALL	25 MM

8.3.7 PIPE INSULATION REQUIREMENTS—INSIDE BUILDING & ABOVE GROUND (TEMPERATURE RANGE BELOW 0 °C)

- 1. Insulate pipe inside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
 - Material: XPS Extruded Styrofoam, with Henry Blueskin vapour barrier, and PVC jacketing
 - Insulation application: 1501-C for cold piping
 - Insulation finish: CPF/4 PVC jacket for exposed piping
- 2. Insulation thickness in accordance with the following table:

	SERVICE TEMPERATURE (°F)							
NOM PIPE SIZE (IN)	-60.0	-40.0	-20.0	00	20.0	40.0		
1/2	2.5	2.0	2.0	1.5	1.5	1.0		
3/4	2.5	2.5	2.0	2.0	1.5	1.5		
1	2.5	2.5	2.0	2.0	1.5	1.5		
11/4	3.0	2.5	2.5	2.0	1.5	1.5		
1 1/2	2.5	2.0	2.5	2.0	1.5	1.5		
2	3.0	2.5	2.5	2.0	1.5	1.5		
2 1/2	2.5	2.5	2.5	2.0	1.5	1.5		
3	3.0	3.0	2.5	2.0	2.0	1.5		
4	3.0	3.0	2.5	2.5	2.0	1.5		
6	3.5	3.0	3.0	2.5	2.0	1.5		
8	3.5	3.0	3.0	2.5	2.0	1.5		
10	3.5	3.5	3.0	2.5	2.0	1.5		
HORIZONTAL. VESSEL	5	4.5	3.5	3	2.5	2.0		
VERTICAL. VESSEL	5	4.5	3.5	3	2.5	2.0		

8.3.8 PIPE INSULATION REQUIREMENTS – OUTSIDE BUILDING & ABOVE GROUND (TEMPERATURE RANGE ABOVE 25 °C)

- 1. Insulate pipe outside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
 - Material: Type A2 mineral fibre, factor applied vapour barrier and aluminum cladding.

• Insulation application: 1501-H for hot piping

• Insulation finish: CPF/3

PIPE SERVICE	DIAMETER	INSULATION THICKNESS
LICATING WATER CURRING DETURN	TO 50 MM	50 MM
HEATING WATER, SUPPLY & RETURN	LARGER THAN 50 MM	50 MM
LIEATING OLVOOL COLUTION CURRING RETURN	TO 50 MM	50 MM
HEATING GLYCOL SOLUTION, SUPPLY & RETURN	LARGER THAN 50 MM	50 MM
OUBLED OLVOOL COLUTION CURRLY C RETURN	TO 50 MM	25 MM
CHILLED GLYCOL SOLUTION, SUPPLY & RETURN	LARGER THAN 50 MM	40 MM
CHILLED CLYCOL SCHITTION CURRING RETURN	TO 50 MM	25 MM
CHILLED GLYCOL SOLUTION, SUPPLY & RETURN	LARGER THAN 50 MM	40 MM

8.3.9 PIPE INSULATION REQUIREMENTS – OUTSIDE BUILDING & ABOVE GROUND (TEMPERATURE RANGE BELOW 5C)

- Insulate pipe outside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
 - Material: XPS Extruded Styrofoam, with Henry Blueskin vapour barrier, and aluminum jacketing
 - Insulation application: 1501-H for hot piping
 - Insulation finish: CPF/3
- 2. Insulation thickness shall be as listed in Table 2.

Table 2 Pipe Insulation Requirements Below 5 °C

	SERVICE TEMPERATURE (°F)					
NOM PIPE SIZE (IN)	-60.0	-40.0	-20.0	00	20.0	40.0
1/2	2.5	2.0	2.0	1.5	1.5	1.0
3/4	2.5	2.5	2.0	2.0	1.5	1.5
1	2.5	2.5	2.0	2.0	1.5	1.5
1 1/4	3.0	2.5	2.5	2.0	1.5	1.5
11/2	2.5	2.0	2.5	2.0	1.5	1.5
2	3.0	2.5	2.5	2.0	1.5	1.5
2 1/2	2.5	2.5	2.5	2.0	1.5	1.5
3	3.0	3.0	2.5	2.0	2.0	1.5
4	3.0	3.0	2.5	2.5	2.0	1.5
6	3.5	3.0	3.0	2.5	2.0	1.5
8	3.5	3.0	3.0	2.5	2.0	1.5
10	3.5	3.5	3.0	2.5	2.0	1.5
HORIZONTAL. VESSEL	5	4.5	3.5	3	2.5	2.0
VERTICAL VESSEL	5	4.5	3.5	3	2.5	2.0

8.3.10 PIPE INSULATION REQUIREMENTS – UNDERGROUND INSIDE & OUTSIDE BUILDING (BELOW 10C AND ABOVE 30C)

- 1. Insulate pipe underground inside and outside the building, as scheduled below, in accordance with TIAC Quality Standard 1501, Piping, as follows:
 - Material: Type A7 closed cell cellular glass
 - Insulation application: 1501-U
 - Insulation finish: weather-proof coating as per insulation manufacturer's instructions

PIPE SERVICE	DIAMETER	INSULATION THICKNESS
HEATING WATER, SUPPLY & RETURN	ALL	50 MM
CHILLED WATER, SUPPLY & RETURN	ALL	50 MM
HEATING GLYCOL SOLUTION, SUPPLY & RETURN	ALL	50 MM
CHILLED GLYCOL SOLUTION SUPPLY AND RETURN	ALL	50 MM
CHILLED BRINE SOLUTION SUPPLY AND RETURN	ALL	50 MM

8.3.11 EQUIPMENT INSULATION REQUIREMENTS - INSIDE BUILDING (ABOVE 40 °C)

- 1. Insulate equipment inside the building, as scheduled below, in accordance with TIAC Quality Standard 1503, Equipment, as follows:
 - Material: Type A1D semi-rigid mineral fiber, with vapour barrier, and PVC jacketing
 - Insulation application: 1503-H for hot tanks and equipment
 - Insulation finish: CEF/2 for hot tanks and equipment

EQUIPMENT	INSULATION THICKNESS
ALL EQUIPMENT ABOVE 60 °C	50 MM
ALL EQUIPMENT UP TO 60 °C	25 MM

8.3.12 EQUIPMENT INSULATION REQUIREMENTS – INSIDE BUILDING (BELOW HIGHEST AMBIENT DEW POINT AND ABOVE 0 °C)

- Insulate equipment inside the building, as scheduled below, in accordance with TIAC Quality Standard 1503, Equipment, as follows:
 - Material: Fibre Flexible Foam Elastomeric, with vapour barrier, and PVC jacketing
 - Insulation application: 1503-C for cold tanks and equipment
 - Insulation finish: CEF/1 for cold tanks and equipment

EQUIPMENT	INSULATION THICKNESS
ALL EQUIPMENT	25 MM

8.3.13 EQUIPMENT INSULATION REQUIREMENTS - INSIDE BUILDING (BELOW 0 °C)

- 1. Insulate equipment inside the building the building, as scheduled below, in accordance with TIAC Quality Standard 1503, Equipment, as follows:
 - Material: XPS Extruded Styrofoam, with Henry Blueskin vapour barrier, and PVC jacketing
 - Insulation application: 1503-C for cold tanks and equipment
 - Insulation finish: CEF/1 for cold tanks and equipment

Table 3 Pipe Insulation Thickness

	SERVICE TEMPERATURE (°F)						
NOM PIPE SIZE (IN)	-60.0	-40.0	-20.0	00	20.0	40.0	
1/2	2.5	2.0	2.0	1.5	1.5	1.0	
3/4	2.5	2.5	2.0	2.0	1.5	1.5	
1	2.5	2.5	2.0	2.0	1.5	1.5	
11/4	3.0	2.5	2.5	2.0	1.5	1.5	
11/2	2.5	2.0	2.5	2.0	1.5	1.5	
2	3.0	2.5	2.5	2.0	1.5	1.5	
2 1/2	2.5	2.5	2.5	2.0	1.5	1.5	
3	3.0	3.0	2.5	2.0	2.0	1.5	
4	3.0	3.0	2.5	2.5	2.0	1.5	
6	3.5	3.0	3.0	2.5	2.0	1.5	
8	3.5	3.0	3.0	2.5	2.0	1.5	
10	3.5	3.5	3.0	2.5	2.0	1.5	
HORIZONTAL VESSEL	5	4.5	3.5	3	2.5	2.0	
VERTICAL VESSEL	5	4.5	3.5	3	2.5	2.0	

8.3.14 EQUIPMENT INSULATION REQUIREMENTS - REMOVABLE/REUSABLE TYPE

- Provide custom designed and manufactured removable and reusable insulation covers for the following:
 - Plate type heat exchanger(s)
 - 150 mm (6") diameter and larger piping strainers, backflow preventers, etc.

8.3.15 APPLICATION OF INSULATING AND PROTECTIVE COATINGS

- Apply insulating and protective coatings in accordance with the manufacturer's instructions. Remove any splatter from adjacent surfaces. Apply insulating/protective coating to the following surfaces:
 - Paint all bare metal surfaces clear of "cold" piping and/or equipment insulation for between 300 mm (12") and 600 mm (24") clear of the pipe or equipment insulation, with "No Sweat-FX" anti-condensation coating.
 - Paint all bare metal surfaces associated with mechanical systems with an operating temperature above 60 °C (140 °F) with "ThermaLite" insulating coating.
 - Paint all seismic restraint hardware such as hanger rods, braces, anchors, etc., as specified on the first two points above.

8.3.16 DUCTWORK SYSTEM INSULATION REQUIREMENTS - INSIDE BUILDING

 Insulate duct systems inside the building and above ground, as scheduled below, in accordance with TIAC Quality Standard 1502, Ductwork and Plenums, as follows:

• material:

Type A2 rigid mineral fibre for exposed rectangular ducts, and all plenums Type B2 flexible mineral fibre for concealed rectangular ducts, and concealed and exposed round or oval ducts

• insulation application:

CER/1 for heating and ventilating system rigid insulation
CER/2 for heating and air conditioning system rigid insulation
CEF/1 for heating and ventilation system flexible insulation
CEF/2 for heating and air conditioning system flexible insulation

insulation finish:

CRF/1 for exposed rectangular duct systems
CRD//1 for exposed round/oval duct systems

	INSULATION	THICKNESS
DUCT SYSTEM SERVICE	RIGID	FLEXIBLE
	INSULATION	INSULATION
DEHUMIDIFIER SUPPLY AND RETURN DUCTS	NONE	NONE
FRESH (OUTSIDE) AIR DUCTS	40 MM	50 MM
FRESH (OUTSIDE) AIR CASINGS AND PLENUMS	40 MM	N/A
MIXED AIR CASINGS AND PLENUMS	25 MM	N/A
MIXED AIR SUPPLY DUCTS (EXCEPT WHERE EXPOSED IN AREA SERVED)	25 MM	40 MM
3M OF EXHAUST DISCHARGE DUCTS DOWNSTREAM (BACK) FROM	25 MM	40 MM
EXHAUST OPENINGS TO ATMOSPHERE	25 101101	40 101101
EXHAUST AIR CASINGS AND PLENUMS WITHIN 3M OF EXHAUST	25 MM	N/A
OPENINGS TO ATMOSPHERE	25 101101	IN/A
HEAT RECOVERY SYSTEM FRESH HEATED AIR	25 MM	40 MM
EXTERIOR DUCTWORK	_	75MM

2. Provide commercial quality corner bead only on exposed rigid duct, plenum and casing insulation in all equipment rooms, corridors, and similar areas where the insulation is subject to damage.

8.3.17 COMMON DUCT SYSTEM INSULATION APPLICATION REQUIREMENTS

- At duct connection flanges insulate the flanges with neatly cut strips of the rigid insulation material secured with adhesive to side surfaces of the flange with a top strip to cover the exposed edges of the side strips, then butt the flat surface duct insulation up tight to the flange insulation, or alternatively, increase the insulation thickness to the depth of the flange and cover the top of the flanges with tape sealant.
- 2. The installation of fastener pins and washers is to be concurrent with the duct insulation application.
- 3. Cut insulation fastener pins almost flush to the washer and cover with neatly cut pieces of tape sealant.
- 4. Accurately and neatly cut and fit insulation at duct accessories such as damper operators (with standoff mounting) and pitot tube access covers.
- 5. Prior to concealment of insulation by either construction finishes or jacket material, patch all vapour barrier damage by means of tape sealant.
- 6. At trapeze hanger locations for rectangular duct install insulation between the duct and the hanger.
- 7. At each duct hanger for round and provide a 100 mm (4") wide full-length piece of rigid mineral fibre board insulation between the duct and the hanger.

END OF SECTION

9 CONTROLS

9.1 GENERAL

9.1.1 QUALITY ASSURANCE

- 1. Control system must be thoroughly tested for functionality following the integration of all new equipment to ensure proper operation in all scenarios.
- 2. Proof of proper operation is to be provided to the Owner and to the Consultant.
- 3. Contractor is responsible for providing the Consultant with control system remote access for the first year of operation.

9.1.2 CONTROLS SHOP DRAWINGS AND PRODUCT DATA SHEETS

- Submit for review, shop drawings and product data sheets indicating in detail
 the design, construction, and performance of products and components. Shop
 drawings and product data sheets shall be supplied as PDF (Portable
 Document Format) files.
- 2. Shop drawings shall include control wiring schematics, sensor data sheets, and all other relevant data.
- 3. The Consultant will retain copies of each shop drawing or product data sheet submitted.
- 4. The Contractor must obtain shop drawings approved by the Consultant prior to ordering equipment.
- 5. The Contractor shall provide a minimum of two weeks to the Consultant to review data sheets and shop drawings prior to ordering equipment.

9.2 PRODUCTS

9.2.1 CONTROLS SYSTEM

1. Contractor shall modify and integrate with the existing controls system unless noted otherwise.

9.2.2 VARIABLE FREQUENCY DRIVES (VFD)

 Contractor to provide all VFDs. Existing VFDs may be reused with approval from the Consultant or the Owner.

- 2. Acceptable VFD manufacturers include Danfoss, and ABB. Substitutions are to be approved by the Consultant and must be equivalent with respect to options, functionality, quality, and control system integration.
- 3. VFD shall have a digital start signal and an analog speed signal.
- 4. VFD shall be provided with bypass contactors unless specified otherwise.
- 5. VFD shall include a NEMA 1 enclosure, load reactors, drive fusing and disconnect switch.
- 6. VFD for motors greater than 10HP(7.5kW), shall be provided with passive harmonic filters to limit the total harmonic distortion from the VFD to 5%.
- 7. Passive harmonic filters shall consist of an inductive-capacitive network in parallel with the load.
- 8. Passive harmonic filters shall be complete with capacitor disconnects that shall automatically disengage the capacitors if the motor is not running or lightly loaded (less than 30% loading).

9.2.3 TEMPERATRE TRANSMITTERS

- 1. All temperature transmitters are to be mounted in wells with the probe in the fluid flow.
- 2. All temperature transmitters are to have operating temperature ranges suitable for the application.

9.2.4 CURRENT TRANSMITTERS

1. Current transmitters shall be sized to measure the entire operating current range of the electrical load they are controlling.

9.2.5 AMMONIA SENSORS

1. Ammonia sensors shall meet all requirements of the currently adopted revision of the CSA B52.

9.3 EXECUTION

9.3.1 CONTROL SYSTEM

1. It is the responsibility of the Contractor to integrate all new equipment, VFD, sensors, and electronic valves.

9.3.2 GRAPHICS PACKAGE

- 1. The Contractor must update all existing graphics to accommodate the new equipment which has been installed.
- The Contractor shall make changes to the operating code and graphics package, per the direction of the Owner's Representative and the Consultant, for 6 months after the agreed upon start-up date at no charge to the Owner or the Consultant.
- 3. The graphics package and code required to operate the controls must be provided on a USB drive to the Owner at the end of the project.

9.3.3 INSTALLATION

- 1. All sensors, wiring, and mounting locations shall be installed per the controls section of the detailed design drawings.
- 2. CTs will be installed on all mechanical loads above 5 hp to allow for energy modeling.
- 3. As-built controls drawings, both in hardcopy size Arch D format and as a PDF, must be provided to the Owner upon completion of the project.
- 4. Contractor is responsible for furnishing and installation of all electrical components required to integrate the new system and associated hardware with onsite electrical and control equipment.

9.3.4 **WIRING**

- 1. All wires must be neat and orderly.
- 2. All exposed wires are to be routed in conduit.
- 3. All outdoor wiring and sensors are to be installed in the appropriate NEMA enclosures, conduit, and terminal boxes.

9.3.5 VFDS

- 1. All VFD will be controlled by a digital start command and a 0 to 10V or 4-20mA signal from the main controls system.
- 2. All VFD will be installed with BACnet and connected to the existing control system to monitor the output speed, operation frequency, amperage, and start command.
- 3. DV/DT filters are to be used any time a VFD is over 50ft away from the load it is controlling.
- 4. Install VFD in a clean and dry location per the manufacturer's specifications.

- 5. VFDs that can be subjected to splashes or leaks from nearby mechanical equipment must be provided with a suitable NEMA enclosure.
- 6. Integrate VFD with the main controls system.
- 7. Install VFD with load reactors if the wire between the VFD and the load is longer than 50 feet.
- 8. At minimum, install VFD controlling the following items with a bypass:
 - Primary glycol and brine pumps
 - Cooling tower and condenser fan motors
 - Cooling tower and condenser water pumps

9.3.6 POST INSTALLATION

- 1. After the system has been started, all controls must be adjusted to accommodate observed operating conditions.
- 2. The Contractor must provide a training course detailing the operation, data logging, and recommended maintenance of the controls system. Course time and length are to be appropriate for the complexity of system operation.

9.3.7 TRAINING AND MANUAL

- After the system has been installed and started, the Contractor shall work with the Consultant to provide a training manual and put on a training session regarding the new equipment controls. This training session shall cover the following:
 - Operating methodology
 - Graphic interface
 - Expected operating conditions
 - System trouble shooting
 - Control inputs
 - Physical location of systems
 - System safeties